
Detecting Contradictions from CoAP RFC
Based on Knowledge Graph

Xinguo Feng1(B), Yanjun Zhang2, Mark Huasong Meng3,4, and Sin G. Teo3

1 The University of Queensland, St. Lucia, Australia
s.feng@uq.edu.au

2 Cyber Security Research and Innovation (CSRI), Deakin University, Geelong,
Australia

3 Institute for Infocomm Research, A*STAR, Singapore, Singapore
4 National University of Singapore, Singapore, Singapore

Abstract. Due to the boom of Internet of Things (IoT) in recent years,
various IoT devices are connected to the internet and communicate with
each other through web protocols such as the Constrained Applica-
tion Protocol (CoAP). These web protocols are typically defined and
described in the Request for Comments (RFC) documents, which are
written in natural or semi-formal languages. Since developers largely fol-
low the RFCs when implementing web protocols, the RFCs have become
the de facto protocol specifications. Therefore, it is desirable to ensure
that the technical details being described in the RFC are consistent, to
avoid technological issues, incompatibility, security risks or even legal
concerns. In this work, we propose RFCKG, a knowledge graph based
contradictions detection tool for CoAP RFC. Our approach can automat-
ically parse the RFC documents and construct knowledge graphs from
them through entity extraction, relation extraction, and rule extraction.
It then conducts an intra-entity and inter-entity consistency checking
over the generated knowledge graph. We implement RFCKG and apply
it to the main RFC (RFC7252) of CoAP, one of the most extensively used
messaging protocols in IoT. Our evaluation shows that RFCKG manages
to detect both direct contradiction and conditional contradictions from
the RFC.

Keywords: Contradiction detection · Knowledge graph · Natural
language processing · Request for comments · IoT protocols

1 Introduction

The Internet of Things (IoT) is an emerging technology in recent years. It refers
to “devices and sensors” that are uniquely addressable based on their communi-
cation protocols, and are adaptable and autonomous with inherent security [5].
Its development is closely connected to many cutting-edge technologies such as
blockchain [10,13], smart home [17], and machine learning [11,23,32]. During
the past decade, IoT applications have experienced rapid growth and have been
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
X. Yuan et al. (Eds.): NSS 2022, LNCS 13787, pp. 170–189, 2022.
https://doi.org/10.1007/978-3-031-23020-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23020-2_10&domain=pdf
https://doi.org/10.1007/978-3-031-23020-2_10

Detecting Contradictions from CoAP RFC Based on Knowledge Graph 171

successfully applied on both individual (e.g., e-health, smart home) and pro-
fessional levels (e.g., smart supply chain, smart city, industry IoT) [16,28]. It
is estimated that there will be over 500 billion IoT devices connected to the
Internet by 2030 [25].

Similar to traditional web endpoints, IoT devices communicate through
the corresponding web protocols, which are defined by the Request for Com-
ments (RFC) specification documents. An RFC is a specification document that
describes the technical details of a web protocol. However, it is challenging to
perform formal verification on an RFC because it is usually written in natural
human languages. There might exist some contradictions and inconsistencies
in an RFC that cannot be easily spotted. Furthermore, ambiguities might be
introduced in the writing of an RFC when people have different understandings
or interpretations of the protocol design. All of those issues may lead to confu-
sion for users who want to utilise the protocol in their implementations. Take
RFC7252 [24] on The Constrained Application Protocol (CoAP) as an example.
Californium [12] is a significant Java implementation for CoAP. On its GitHub
repository, 170 out of 2,030 issues in total (around 8%) mention the keyword
RFC1, indicating there might be discrepancies between the implementation and
the description in the RFC. Those discrepancies are possibly caused by the con-
tradictions existing in the RFC itself. Considering such contradictions may make
communicating devices malfunction and introduce potential security issues, we
see the need to validate if the defined technical details are consistent within the
specification document.

Existing work on RFC or similar specification documents focuses on extract-
ing finite state machines to perform security analysis dynamically [22,30]. There
is limited work on detecting contradictions in natural language documents them-
selves, especially in specification documents like RFC. We seek a way to fill this
gap. In this paper, we propose RFCKG, an approach to construct a knowl-
edge graph from RFC documents and detect potential contradictions from the
knowledge graph. We construct the knowledge graph through entity extrac-
tion, relation extraction, and rule extraction with NLP techniques, such as co-
reference resolution, sentence split and dependency parsing. We apply RFCKG
to RFC7252 of CoAP. It manages to detect one direct contradiction and four
conditional contradictions from the RFC.

We summarise our contributions as the following:

– We identify the essential components for constructing a knowledge graph from
RFC documents, such as entity, relation, and rule.

– We define two types of contradictions and propose a general framework to
check for them with the constructed knowledge graph.

– We propose RFCKG, a general framework to construct a knowledge graph
with the extracted components of an RFC document. We demonstrate that
RFCKG can successfully capture contradictions from a real-world RFC, which
shows the soundness of our approach.

1 Assessed on 11th August, 2022.

172 X. Feng et al.

2 Background and Related Work

In this section, we introduce some background knowledge and related work that
inspire this work.

2.1 Background

RFC. An Request for Comments (RFC) is a specification document that
describes the technical details of a web protocol. It is usually written by engineers
or computer scientists to describe the methods, behaviours, or innovations of the
web protocol in natural human languages. Developers who wish to implement
the protocol or users who wish to utilise the implementations should always refer
to the RFC that defines the protocol.

Knowledge Graph. Since the technical details are all described in the spec-
ification documents, extracting the knowledge and representing it in an appro-
priate data structure is desired. A knowledge graph (KG) is a multi-relational
graph composed of nodes (entities) and edges (relations), and each edge can be
represented in a triplet (head entity, edge, tail entity).

2.2 Related Work

Knowledge Graph Representation for Documents. Li et al. [15] construct
a knowledge graph from API documents, which can be easily accessed by devel-
opers. A knowledge graph is a multi-relational graph constructed with nodes
(entities) and edges (relations), where each edge indicates the two entities are
connected by a specific relation [31]. Mondal et al. [21] propose a way to do
an end-to-end knowledge graph construction on NLP related papers to describe
NLP tasks and their evaluations. Typical tasks for constructing a knowledge
graph are entity extraction and relation extraction. Although there exist some
tools [9,26,35] for these tasks, they are usually for general purposes. It is unlikely
that they would work well with tasks that are domain-specific without further
injecting the domain knowledge.

Rule Extraction for RFC. Rules in RFC define the functionalities and
behaviours of the protocol. The natural language writing style of rules is spec-
ified in RFC 2119 [3]. In particular, it defines the modal keywords to indicate
the requirement levels for rules [27]. Furthermore, RFC 8174 [14] emphasises
the usage of uppercase letters for modal keywords defined in RFC 2119. Tian et
al. [27] extract the rules with keyword matching and use dependency parsing to
process the rules. Dependency parsing is also present in other work such as [33].
It works well with simple sentences but suffers with complicated sentences with
multiple objects or multiple subordinate clauses.

Detecting Contradictions from CoAP RFC Based on Knowledge Graph 173

Different Representations for Specifications. Andow et al. [1] construct
an ontology on applications’ privacy policy documents and check for logical
contradictions (e.g. “Not collecting personal information” contradicts with “but
collecting email address”), which is the main inspiration for this work. Wang
et al. [30] utilise traffic, documents, and configurations of several IoT proto-
cols and construct the finite state machines to evaluate their security. Pacheco
et al. [22] also construct finite state machines of protocols from documents to
perform attack synthesis.

Contradiction Checking for Specifications There is limited work on dis-
covering contradictions in the text. Harabagiu et al. [8] propose an approach to
recognise negation, contrast and contradictions for general text. Xie et al. [34]
study the privacy policy compliance issue of virtual personal assistant apps.
Wang et al. [29] propose a formal analysis framework to detect specification
contradictions in single sign-on protocols. Mahadewa et al. [18] explore contra-
dictions in privacy policy on trigger-action integration platforms. Another recent
work by Meng et al. [19] proposes a systematic analysis methodology to scru-
tinize the compliance of mobile operating systems in protecting users’ privacy.
However, recognising contradictions in specifications documents, such as RFC,
has not been well studied.

3 Problem Definition

RFCs are written in unstructured natural languages. RFCKG parses them and
generates knowledge graphs that can be automatically checked for contradic-
tions. In this section, we first define the components of the knowledge graph
(Sect. 3.1), then we present the types of contradictions we target to detect in
this work (Sect. 3.2).

3.1 Entity, Rule and Relation

The knowledge graph generated by RFCKG consists of three components,
i.e., entity, rule and relation, where the entities and the rules are represented as
nodes, and the relations are represented as edges.

Entity. We refer an entity in RFCs as an object in web protocols that has
functionalities or behaviours being described. Commonly used entities include
“message”, “options”, “token”, etc. We use a single field data structure to repre-
sent an entity node in the knowledge graph: (name). For example, the entity
“confirmable message” is represented as (confirmable message).

Rule. A rule node consists of a set of atomic rules appearing in a same rule
statement, concatenated by logical connective “∧ (AND)”, “∨ (OR)”, “� (XOR)”
and “¬ (NEGATION)”. We define an atomic rule as a four-tuple data structure:

({variable, operator, value}, necessity),

174 X. Feng et al.

in which {variable, operator, value} represents the rule content, and the
necessity represents the requirement level, including “STRONG” and “WEAK”,
where “STRONG” indicates an absolute requirement level such as “MUST”,
“REQUIRED”, “SHALL”, “MUST NOT”, and “WEAK” indicates an optional
requirement such as “NOT RECOMMENDED”, “MAY” and “OPTIONAL”. For
example, in the statement: “Message version number MUST be set to 1 and the
options of the message MUST be cached”, the extracted rule is:

({version_number = 1},STRONG) ∧ ({cached_options = TRUE},STRONG)

Relation. The relations RFCKG targets to extract from RFCs include (1) the
relation between an entity and an entity, e.g, “A version number [entity] is a field of
[relation] a message [entity]”, (2) the relation between an entity and a rule, e.g.,
({version_number = 1}, STRONG) [rule] is a rule of [relation] confirmable mes-
sage [entity], and (3) the conditional relation between a rule and a rule. For exam-
ple, in the statement “If the version number of a message is not set to 1, the options
of the message MUST NOT be cached”, ({version_number ! = 1}, STRONG)
[rule] is a condition of [relation] ({cached_options = FALSE}, STRONG)
[rule]. The former is the antecedent rule and the latter is the consequent rule.

Figure 1 illustrates the KG representation of the rule statement “If the version
number of a message is set to 1, the options of the message MUST NOT be cached”.

message

field

version

number

rule

version

number

rule 1

rule

version

number

rule 2

({version_number

= 1}, STRONG)

({cache_options =

False}, STRONG)

condition

Fig. 1. RFCKG’s knowledge graph representation of an example statement in RFC:
“If the version number of a message is set to 1, the options of the message MUST NOT
be cached.”

Detecting Contradictions from CoAP RFC Based on Knowledge Graph 175

3.2 Contradictions

The core idea of RFCKG is to represent an unstructured RFC document under
analysis as a structured knowledge graph, and then to check its rules for contra-
diction detection. In particular, we define two types of contradictions as follows:

– Direct contradiction. This occurs when different rules of a same entity e -
denoted as {r1, ..., rn}e contradicts with each other. That is, the conjunctions
of rules is evaluated as false, i.e.,

n∧

i=1

{ri}e = FALSE

A direct contradiction is regarded as an erroneous inconsistency of an RFC
which may lead to implementation issues. This contradiction captures the
following three scenarios.

(1) Contradiction among plain rules. A plain rule refers to a rule that
is not an antecedent rule or consequent rule. For example, consider the fol-
lowing rule statements “The version number of a message MUST be set to
1” and “Message version number MUST be 0”. The rules for these rule state-
ments are ({version_number = 1}, STRONG) and ({version_number = 0},
STRONG). These are plain rules as they are not antecedent rules or conse-
quent rules. We concatenate them and see that they evaluate as false.

(version_number = 1) ∧ (version_number = 0) = FALSE

(2) Contradictions between plain rule and consequent rule. It occurs
when a plain rule states “A must be True”, while a consequent of a conditional
rule states “A is False”. For example, consider the following rule statements
“The version number of a message MUST be set to 1” and “If the options of
the message are cached, the version number of the message MUST be set to
0”. The rule extraction and evaluation are the same as in the example above.

(3) Contradictions between the consequent of conditional rules. For
example, two conditional rules state the same antecedent while implying a
contradicted consequent. For example, consider the following rule statements
“If the options of the message are not cached, the version number of the
message MUST be set to 1” and “If the options of the message are not cached,
the version number of the message MUST be set to 0”. The rule extraction
and evaluation are the same as in the example above.

– Conditional contradiction. This occurs when the antecedent of conditional
rules contradicts others. Denote ci as an antecedent rule of a conditional
proposition, RFCKG reports a conditional contradiction if

n∧

i=1

{ri, ci}e = FALSE

176 X. Feng et al.

Fig. 2. Overview of approach showing three phases

For example, consider the following rule statements “Message version num-
ber SHOULD be set to 1” and “If the version number of a message is not
1, the options MUST be cached”. The rule for the first statement is ({ver-
sion_number = 1}, STRONG), which is a plain rule. The antecedent rule for
the second statement is ({version_number != 1}, STRONG). We concatenate
them and see they evaluate as false.

(version_number = 1) ∧ (version_number ! = 1) = FALSE

The conditional contradictions extracted by RFCKG can highlight the
instruction of error handling in RFC, which is likely ignored by the developers
especially when such statements appear in different places in the document.

4 RFCKG Approach

We design RFCKG as a three-phase approach that consists of rule statements
extraction, knowledge graph construction and Contradiction detection, as shown
in Fig. 2.

4.1 Rule Statement Extraction

This phase aims to extract statements that contain rules of interest from RFCs.
We first remove the irrelevant information from the document including the
headers, list of content, acknowledgement, references, figures, and tables. We
then use the Natural Language Toolkit (NLTK) [2] to split the rest of the
document into sentences.

Detecting Contradictions from CoAP RFC Based on Knowledge Graph 177

Table 1. Modal keywords for extracting rule statements

STRONG keywords WEAK keywords

MUST, REQUIRED, SHALL,
MUST NOT, SHALL NOT

SHOULD, RECOMMENDED, SHOULD NOT, NOT
RECOMMENDED, MAY, OPTIONAL

Since the release of RFC2119 (which specifies the standard for keywords usage
in RFCs to indicate requirement levels) in 1997 [3], RFC documents (released after
1997) enforce the use of capitalized modal verbs (such as “MUST”, “MAY” and
etc.) to indicate the requirement level of a rule in the specification. We therefore
examine the capitalized modal verbs used in the sentences, and identify a sentence
that contains those capitalized modal verbs as a rule statement. More specifically,
we extract the strong statements and weak statements based on the modal key-
words as shown in Table 1 following the definition of prior work [27]. Algorithm 1
in Appendix B demonstrates the details for rule statements extraction.

4.2 Knowledge Graph Construction

This phase aims to identify entities, rules and relations based on the extracted
statements, and represent them in a knowledge graph.

4.2.1 Entity Extraction
To identify the entities, we select 56 types of common entities from summarising
the terminologies from the Terminology section of RFC7252 as shown in Table 5
in Appendix A. Given a rule statement, if an entity in the predefined list appears
in the statement, we add it to our extracted entity list.

4.2.2 Rule Extraction
There are seven steps for extracting rules from rule statements, which are rule
context construction, rule entity determination, co-reference resolution, sentence
splitting and rephrasing, conditions identifications, rule construction, and vari-
able normalisation.

– Context construction. For each rule statement we extract, it is one com-
plete sentence. To better address the later tasks, we need to construct a
semantic context environment for each rule statement. For each rule state-
ment we extract, we locate its position in the RFC document and backtrack
five sentences before it. This is based on the assumption that, if a rule state-
ment describes an entity’s behaviours, the neighbouring sentences before it
should also mention the same entity.

– Rule entity determination. When we construct the Rule nodes in a later
step, we need to connect each Rule node to a corresponding Entity node. For
each rule statement context, we iterate through the extracted entity list and
count the occurrences of each entity. We take the entity that appears the most

178 X. Feng et al.

as the rule entity. If there are multiple entities that have the same number of
occurrences, we take the one that appears the last as the rule entity.

– Co-reference resolution. It is common in natural languages to use co-
references to refer to words or phrases that are mentioned before. We aim
to find the co-references in the rule statements and substitute them with the
actual words or phrases they are referring to, so that we have complete and
rich information in each rule statement for the next step. We use the co-
reference resolution functionality in the spaCy [9] NLP tool to address the
pronoun co-reference, such as “it”, “them”, etc. For other co-references that
the tool cannot address, such as “this field”, we use the rule entity we identify
for each rule to substitute them.

– Sentence splitting and rephrasing. A rule statement is a sentence that
describes one or several behaviours of an entity, which means the structure
of the sentence can be complex. It would be easier to process the rule state-
ment if we can split one complex sentence into multiple simple sentences but
retain the semantics that describes the behaviours, so that we can process
these simple sentences one at a time. To address this, we use the dependency
parsing functionality in the spaCy [9] NLP tool and look for the root of the
rule statement, then look for words that have a conjunction dependency rela-
tion with it. We then look for the subject of the rule statement, split the
rule statement with the conjunction words, and concatenate each of the split
sentences with the subject in the front. In this way, we split and rephrase the
complex rule statement into multiple complete but simple rule statements.
To determine the logical connective between the split sentences, we see if the
keyword “and” or “or” appears in the original rule statement. If “or” appears,
we determine the logical connective to be “∨ (OR)”. If not, we determine the
logical connective to be “∧ (AND)”.

– Condition identification. Recall that we define a type of contradiction as
conditional contradiction in Sect. 3.2. For a rule statement, we need to know
if there exists a conditional relation between different behaviours. To address
this, we look for rule statements that start with the word “If”, and split it at
the first comma. We give the first part an antecedent label to indicate it is an
antecedent rule, and the following part a consequent label to indicate it is a
consequent rule. For the other situation that we describe above, we give the
split sentences an entity label, indicating that they are plain entity rules.

– Rule construction. Recall that we define an atomic rule as a four-tuple
data structure:

({variable, operator, value}, necessity),

We construct atomic rules on a split sentence level. The rules we try to con-
struct are operations that the entity performs to describe its behaviours.
There are two main types of atomic rules. The first type specifically describes

Detecting Contradictions from CoAP RFC Based on Knowledge Graph 179

that an item is set to, equal to, larger, or smaller than a value. The other type
describes an operation being performed, but does not specifically describe any
value. We review part of the split sentences and define 59 syntactical patterns
for spaCy [9] to extract variables for constructing the atomic rules. A syn-
tactical pattern is a pattern that describes the dependency relations between
the components we want to extract.
For example, consider the following rule statement “Implementations of this
specification MUST set the version number to 1”. The variable we want to
extract from the first example above is “version_number ”. We look at the
dependency relations of this sentence, as shown in Fig. 3. We define the pat-
tern as {verb, dobj, compound, prep, pobj}, indicating that we want to extract
the verb, the direct object of the verb, the compound of the direct object,
the preposition of the verb, and the prepositional object of the preposition.
The information we extract with this pattern from this sentence is {set, num-
ber, version, to, 1}. We organise the order of these words and construct the
atomic rule as ({version_number, =, 1}, STRONG), in which the necessity
“STRONG” comes from the fact that the original rule statement is a strong
rule statement.
For each split sentence that belongs to a rule statement, we apply these 59
defined patterns to them and construct atomic rules accordingly. Then we
apply the logical connective that we extracted above to concatenate these
atomic rules to construct a Rule object that represents the original rule state-
ment. The entity, antecedent and consequent rule labels are carried over to
these constructed rule objects.

– Variable normalisation. The 59 defined syntactical patterns are applied to
all split and rephrased sentences, as we want the defined syntactical patterns
to be able to generalise to more sentences that have similar structures. There
could be situations where variables extracted from different patterns actually
mean the same thing. Also, different words might have the same or similar
meanings. These different variables that actually could mean the same should
be grouped as one variable as it might affect the accuracy of the contradiction
checking later. To address this, for each Entity node, we gather all the vari-
ables of all the Rule nodes under it. For each variable, we use the spaCy [9]
tool with its internal word embedding to get the variable’s average embedding
vector. Then we compute the cosine similarity between all variable pairs. If
the similarity is larger than 0.9, we mark them as similar variables. After we
gather all the similar variables, we substitute the variable that has the longer
name with the shortest one between them.

4.2.3 Relation Extraction
For the entity-entity relation extraction, we examine each combination of the
entity pair we extracted and identify the relation defined in Table 5. For the entity-
rule relation extraction, recall that we already identify that each rule should belong
to an entity. We simply use the “rule” relation defined in Table 5 in Appendix A.
For the rule-rule relation extraction, if a rule has the antecedent rule label and the

180 X. Feng et al.

Fig. 3. Dependency relations of the example rule statement “Implementations of this
specification MUST set version number to 1”

following rule from the same original rule statement has the consequent rule label,
we use the “condition” relation defined in Table 5 in Appendix A.

4.2.4 Graph Representation
We use the open source library NetworkX [7] for the graph construction. We
first create Entity nodes for the extracted entities and add them into the graph.
We then create directed edge between Entity nodes and connect them with the
corresponding relation as the edge label. For example, as a “confirmable message”
[entity] is a type of [rule] a “message” [entity], the two entities are first added
into the graph and an edge with the label “type” is then added which points from
“message” to “confirmable message”. We go through all the extracted entity pairs
and their relations, and a skeleton graph (without Rule nodes) is constructed.

We then construct the Rule nodes and their corresponding entity-rule and the
rule-rule edges. For each Rule node, we first add it to the graph. Then we create
a directed edge with a “rule” label pointing from its possessor Entity node to
itself. For example, Rule(rule={“version_number:=”: 1}, necessity=“STRONG”)
belongs to Entity(version_number). We complete the entity-rule edges construc-
tion at this state. Then we examine each Rule node and see whether it carries
an antecedent rule label from the previous steps. If it does, we locate the corre-
sponding Rule node that carries the consequent rule label and create a directed
edge with a “condition” label pointing from the antecedent Rule node to the
consequent Rule node.

4.3 Contradiction Detection

We now describe the contradictions detection step with the knowledge graph
constructed described above. We do contradictions detection on the entity level.
Recall that each atomic rule within a Rule node is constructed with the variable,
the operator and the value. When checking for contradictions for an entity, we
concatenate the atoms within the same Rule node with the corresponding logical
operator as the Rule node’s expression, then we concatenate the different Rule
nodes’ expressions under the same Entity node with the “∧ (AND)” operator.
We then use the open source Python library SymPy [20] as a solver to see if it is
consistent (return True of False).

Detecting Contradictions from CoAP RFC Based on Knowledge Graph 181

To prepare for contradiction checking, we need to transform the variables and
values into appropriate forms, so that the solver can construct the expressions
and evaluate if they are consistent or not. For each Entity node in the graph, we
traverse the graph to get all the Rule nodes that it is connected to, and separate
them into entity rules, antecedent rules and consequent rules. We collect all the
unique variables we extracted in the three rule sets and create a unique symbol
for each of them. We also collect all the unique values for these variables. There
are multiple value types for the values, such as numerical, string, and boolean.
We keep the numerical values as they are and transform the other value types
into unique integer values for the solver as the solver can only accept numerical
values. We start by taking a seed integer, for example, 10,000, and we iterate
through all the values that are not numerical. If we found a value that is not
transformed yet, we assign this seed integer to it and increment the seed by 1 as
the new seed, and repeat the process. To determine the appropriate value of the
seed, we simply go through all the unique numerical values and pick one that
does not collide with the existing values. For the operators “>”, “>=”, “=”, “!=”,
“<=”, and “<”, we keep them and call the corresponding evaluation functions in
the SymPy [20] library.

We check for direct contractions first. Recall that there are three types of
direct contradictions. For the first type of contradiction, which is a contradic-
tion between plain rules of an Entity node, we take each variable in each Rule
node in the entity rules set and create an atom logical expression for it with
its corresponding operator and value. We store this expression and iterate the
next variable. We create another atom logical expression for the next variable
and concatenate it with the previous one with the logical connective described
in the Rule node. After iterating all the variables in the Rule node, we have
a final expression that represents this particular Rule node. We store this final
expression then iterate to the next Rule node and repeat the process. We then
concatenate these two expressions that represent two different Rule nodes with
“∧” as these are plain entity rules, and the variables in them should all be consis-
tent. If it is evaluated as true, we store the concatenated expression and iterate
to the next Rule node and repeat the process. If it is evaluated as false, then we
find a direct contradiction. We record the contradiction and remove the second
expression from the concatenated expression and iterate to the next Rule node
for further contradiction checking. Algorithm 2 in Appendix B demonstrates this
process.

The contradiction detection for the other two types of direct contradictions
are similar. For the second type, we keep the final expression that is evaluated
as true from when we check for the plain entity rules, and iterate through all the
consequent Rule nodes in the same process described above. For the third type,
we only iterate through the consequent Rule nodes that are pointed from the
same antecedent Rule node without the final entity rules expression, in the same
process described above. For any direct contradiction found, if both original rule
statements have the same requirement level (both strong or weak), we cannot

182 X. Feng et al.

Table 2. Results on knowledge graph construction from RFC7252

Rule statements Graph nodes Rule nodes

Strong Weak Total Entity Rule Total Plain Antecedent Consequent Total

136 81 217 28 319 347 220 41 58 319

recommend which one to follow. If not, we can recommend to follow the one
with a strong requirement level.

We then check for conditional contradictions. The process is also similar to
direct contradiction checking. We keep the final expression that is evaluated as
true from when we check for the plain entity rules. We then iterate through each
Rule node in the conditional rules set, construct the rule expression, concatenate
the rule expression with the evaluated entity rule expression with “∧” and check
if there is a contradiction between them. We do not store the concatenated
expression. We iterate to the next conditional rule and repeat the process.

5 Evaluation

We implement RFCKG on RFC7252 on the CoAP protocol. In this section, we
report and evaluate the results.

5.1 Knowledge Graph Construction

RFCKG extracts 217 rule statements in total on RFC7252, with 136 strong
statements and 81 weak statements. From the rule statements, we extract and
construct 28 Entity nodes with the predefined entity list and use two predefined
relations “type” and “field” to construct the skeleton knowledge graph. From the
217 rule statements, we construct 319 Rule nodes and use the predefined relation
“rule” to connect them to the corresponding Entity nodes. Out of the 319 Rule
nodes, there are 220 plain entity rules, 41 antecedent rules and 58 consequent
rules. RFCKG extracts the knowledge that describes the behaviours of entities
in rules and represent it in a knowledge graph data structure, which can be easily
accessed. Table 2 shows the results of our knowledge graph construction.

5.2 Contradiction Detection

For the contradictions checking, we captured 21 contradictions in total, with 16
direct contradictions and five conditional contradictions. Out of the 16 direct
contradictions, one of them is true positive, which is a weak contradiction, and
15 of them are false positive. Out of the five conditional contradictions, four
of them are true positive, and one of them is false positive. Table 3 shows the
result of contradiction checking. Table 4 shows the five detected contradictions
and their original rule statements.

Detecting Contradictions from CoAP RFC Based on Knowledge Graph 183

Table 3. Results on contradiction detection from RFC7252

True positive False positive Total
Direct contradiction 1 15 16
Conditional contradiction 4 1 5
Contradiction 5 16 21

Table 4. Detected contradictions and their original rule statements

RS1 RS2 Type

C1 Implementations SHOULD also
support longer length identifiers
and MAY support shorter lengths

Note that the shorter lengths
provide less security against
attacks, and their use is NOT
RECOMMENDED

Direct

C2 The Token Length field MUST be
set to 0 and bytes of data MUST
NOT be present after the Message
ID field

If there are any bytes, they MUST
be processed as a message format
error

Conditional

C3 An option that is not repeatable
MUST NOT be included more
than once in a message

An option MAY be included one or
more times in a message

Conditional

C4 Any attempt to supply a NoSec
response to a DTLS request simply
does not match the request and
therefore MUST be rejected

Unless it does match an unrelated
NoSec request

Conditional

C5 Implementations of this
specification MUST set this field to
1 (01 binary)

Messages with unknown version
numbers MUST be silently ignored

Conditional

5.2.1 Direct Contradiction
Refer to the two original rule statements for C1 in Table 4. The first rule state-
ment describes shorter length identifiers MAY be supported. The second rule
sentence describes that the use of shorter length identifiers is NOT RECOM-
MENDED. The variable extracted from both rule statements “support shorter
length”. The value from the first statement is True and the value from the sec-
ond statement is False, hence it yields a contradiction. This contradiction might
cause confusion for implementations for this functionality, e.g., one implementa-
tion supports shorter length identifiers and the others do not. Also, they are on
the same requirement level, and one cannot overwrite the other.

5.2.2 Conditional Contradiction
For the four true positive conditional contradictions, all of them are to describe
the handling of the situations that are different from the entity plain rules.

184 X. Feng et al.

Refer to C5 in Table 4. The variable extracted from both rule statements is
“version number”, while the first rule statement states that it should be equal
to 1 and the second rule statement states that it should not be equal to 1. The
antecedent of the second rule statement is contradicting the first rule statement,
but the consequent describes what should be done if it happens. Although these
conditional contradictions are not real inconsistencies but to describe the error
handling, they still deserve to be highlighted for developers to make sure the
error handling practice is correctly followed.

5.2.3 False Positive Analysis
We now take a closer look at the false positive cases we found and understand
why they happen. Recall that when we extract the variables from the rule state-
ments, we defined 59 syntactical patterns for sentences with different syntactical
structures and apply them to all rule statements. Then we normalise variables
that have a similar meaning as one variable. The reason why these false positive
contradictions are captured is that, some of the syntactical patterns are extract-
ing irrelevant variables from some rule statements, and they are normalised as
one variable, which is the same variable from other rule statements with different
values. Hence a contradiction is observed. We examine all the false positive con-
tradictions with their original rule statements, the extracted variables and the
normalised variables. We find that all of them are captured due to this reason.

6 Discussion and Future Directions

We now discuss some limitations of this work and some possible future directions.

Entity and Relation Extraction. The construction of a knowledge graph is
based on predefined lists of entities and relations, and it requires prior knowledge
to determine the relation between the entity pairs. There exist tools for general
purpose entity extraction and relation extraction. More advanced NLP tools,
such as BERT [6] and GPT-3 [4], are language models pre-trained on large
scale corpora and they perform well on a range of general tasks. A possible
future direction is to take these existing models and further pre-train them with
domain specific corpora, so that they would adapt their parameters to better
relate different words within the domain specific language environment. Then we
take these further pre-trained models and use them on the desired downstream
tasks to construct the knowledge graph in a more automated way.

Co-reference Resolution and Sentence Simplification. Recall that when
we construct the Rule nodes in Sect. 4.2.2, we introduce the co-reference reso-
lution and spilt and rephrase techniques. Although they improve the process to
construct the knowledge graph, they also input noise and errors into the graph

Detecting Contradictions from CoAP RFC Based on Knowledge Graph 185

when they cannot identify the correct co-reference or split the sentence in the
wrong way. The co-reference resolution tool we use is also for general purpose.
The similar idea to further pre-train an existing language model to inject domain
knowledge also applies here.

Introduced Noise. In our approach, although there is some noise being intro-
duced, we argue that it is still reasonable to do so. From our true positive direct
contradiction case, the original variable being extracted are “support shorter
lengths” and “use shorter lengths”, and they have the value True and False respec-
tively. If we do not normalise these two variables as one, we will not find this
contradiction exists. Furthermore, our work does not target to only capture pre-
cise contradictions, but to send out warnings when we suspect that there might
be a contradiction. However, a possible solution to improve this might be to
split the sentences into several clusters, where each cluster contains sentences
that have similar syntactical structures. We might be able to describe the syn-
tactical structure of a sentence with features like the number of syntactical roles
(verbs, subjects, etc.), positions of these roles, and so on.

Implicit Condition. Recall that when we construct the antecedent Rule
nodes and the consequent Rule nodes, we identify the conditions based on the
explicit use of the keyword “if”. There exist some situations that the condition is
expressed implicitly in the rule statements. A systematic way to identify these
implicit conditional relations is worth being explored.

Reasoning Scalability. We observe that the SymPy [20] solver we use for con-
tradictions detection is not satisfactorily efficient even on a single specification
document (RFC7252), due to the large number of variables extracted and eval-
uated. This indicates there would be a scalability issue when we apply this
approach to a broader range of documents. A recent work by Zhang et al. [36]
inspires us that it is possible to utilise the ability of deep neural networks for
more efficient reasoning.

7 Conclusion

In this work, we propose RFCKG, a knowledge graph based contradiction detec-
tion tool for RFC documents. We implement it on RFC7252 of CoAP and suc-
cessfully detect five contradictions, with one direct contradiction and four con-
ditional contradictions. We evaluate the results and propose future directions to
improve our approach to be more accurate and more automated.

186 X. Feng et al.

Appendix A Table for Predefined Entities and Relations

Table 5. Predefined entities and relations

Entities Relations

message, empty message, version number, token length, payload, option,
option number, option delta, configuration, option length, endpoint,
recipient, option value, confirmable message, acknowledgement message, reset
message, non-confirmable message, message id, client, get, put, delete, server,
sender, response code, proxy, uri-path option, proxy-uri option, etag option,
location-path option, constrained networks, datagram transport layer
security, dtls, pre-shared key, psk, raw public key, x.509 certificate, certificate,
application environment, post, if-match option, if-none-match option, origin
server, content-format, resource discovery, intermediary, forward-proxy,
reverse-proxy, coap-to-coap proxy, cross-proxy, separate response, critical
option, elective option, unsafe option, safe-to-forward option

type,
field,
rule,
condition

Appendix B Algorithms for Extracting Rule Statements
and Detecting Contradictions

Algorithm 1. Extracting rule statements from RFC
Input: Preprocessed RFC document R
Output: strong and weak rules statements sets

1: modal_keywords ← [“MUST”, ... , “MAY”, “OPTIONAL”]
2: strong_modal_keywords ← [“MUST”, ..., “SHALL”]
3: strong_rules_statements ← []
4: weak_rules_statements ← []
5: rfc_sentences ← NLTK.split_sentences(R)
6: for i ← 0, length(rfc_sentences) do
7: sentence ← rfc_sentences[i]
8: for j ← 0, length(modal_keywords) do
9: keyword ← modal_keywords[j]

10: if keyword in sentence then
11: if keyword in strong_modal_keywords then
12: strong_rules_statements.append(sentence)
13: else
14: weak_rules_statements.append(sentence)
15: break
16: return strong_rules_statements, weak_rules_statements

Detecting Contradictions from CoAP RFC Based on Knowledge Graph 187

Algorithm 2. Check Direct Contradictions
Input: entity_rules_set, variable_symbols_set, variable_values_set
Output: direct contradictions set, entity evaluation

1: entity_evaluation ← True
2: entity_rules_evaluated ← []

3: direct_contradictions ← []

4: for i ← 0, length(entity_rules_set) do
5: rule ← entity_rules_set[i]

6: rule_items ← rule.items
7: rule_necessity ← rule.necessity

8: rule_operator ← rule.operator
9: rule_evaluation ← None

10: for j ← 0, length(rule_items) do
11: variable, operator, value ← rule_items[j]

12: variable_symbol ← variable_symbols_set[variable]
13: value_integer ← variable_values_set[value]

14: expression ← SymPy.operation(variable_symbol, operator, value_integer)

15: if rule_evaluation is None then
16: rule_evaluation ← expression
17: else
18: if rule_operator is “AND” then
19: rule_evaluation ← rule_evaluation & expression

20: else
21: rule_evaluation ← rule_evaluation | expression
22: temp_entity_evaluation = entity_evaluation & rule_evaluation

23: if temp_entity_evaluation is False then
24: direct_contradictions.append((entity_rules_evaluated, rule))

25: else
26: entity_evaluation ← temp_entity_evaluation

27: entity_rules_evaluated.append(rule)
28: return direct_contradictions, entity_evaluation

References

1. Andow, B., et al.: {PolicyLint}: investigating internal privacy policy contradictions
on google play. In: 28th USENIX Security Symposium (USENIX security 19), pp.
585–602 (2019)

2. Bird, S., Klein, E., Loper, E.: Natural language processing with Python: analyzing
text with the natural language toolkit. O’Reilly Media, Inc (2009)

3. Bradner, S.: Key words for use in RFCs to indicate requirement levels. http://
datatracker.ietf.org/doc/html/rfc2119 (1997). Assessed 04 Aug 2022

4. Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process.
Syst. 33, 1877–1901 (2020)

5. Chegini, H., Naha, R.K., Mahanti, A., Thulasiraman, P.: Process automation in
an IoT-fog-cloud ecosystem: a survey and taxonomy. IoT 2(1), 92–118 (2021)

6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

7. Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics,
and function using networkx. In: Varoquaux, G., Vaught, T., Millman, J. (eds.)
Proceedings of the 7th Python in Science Conference, pp. 11–15. Pasadena, CA
USA (2008)

http://datatracker.ietf.org/doc/html/rfc2119
http://datatracker.ietf.org/doc/html/rfc2119
http://arxiv.org/abs/1810.04805

188 X. Feng et al.

8. Harabagiu, S., Hickl, A., Lacatusu, F.: Negation, contrast and contradiction in text
processing. In: AAAI, vol. 6, pp. 755–762 (2006)

9. Honnibal, M., Montani, I.: spaCy 2: Natural language understanding with Bloom
embeddings, convolutional neural networks and incremental parsing (2017)

10. Huh, S., Cho, S., Kim, S.: Managing IoT devices using blockchain platform. In: 2017
19th International Conference on Advanced Communication Technology (ICACT),
pp. 464–467. IEEE (2017)

11. Khan, L.U., Saad, W., Han, Z., Hossain, E., Hong, C.S.: Federated learning for
internet of things: recent advances, taxonomy, and open challenges. IEEE Commun.
Surv. Tutorials PP(99), 1 (2021)

12. Kraus, A.: californium. https://github.com/eclipse/californium (2016). Accessed
11 Aug 2022

13. Le, D.P., Meng, H., Su, L., Yeo, S.L., Thing, V.: Biff: a blockchain-based IoT
forensics framework with identity privacy. In: TENCON 2018–2018 IEEE region
10 conference, pp. 2372–2377. IEEE (2018)

14. Leiba, B.: Ambiguity of uppercase vs lowercase in RFC 2119 key words. https://
datatracker.ietf.org/doc/html/rfc8174 (2017). Accessed 04 Aug 2022

15. Li, H., et al.: Improving API caveats accessibility by mining API caveats knowl-
edge graph. In: 2018 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pp. 183–193. IEEE (2018)

16. Lynggaard, P., Skouby, K.E.: Complex IoT systems as enablers for smart homes
in a smart city vision. Sensors 16(11), 1840 (2016)

17. Mahadewa, K., et al.: Scrutinizing implementations of smart home integrations.
IEEE Trans. Softw. Eng. 47, 2667–2683 (2019)

18. Mahadewa, K., et al.: Identifying privacy weaknesses from multi-party trigger-
action integration platforms. In: Proceedings of the 30th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, pp. 2–15 (2021)

19. Meng, M.H., et al.: Post-GDPR threat hunting on android phones: dissecting OS-
level safeguards of user-unresettable identifiers. In: The Network and Distributed
System Security Symposium (NDSS) (2023)

20. Meurer, A., et al.: SymPy: symbolic computing in python. Peer. J. Comput. Sci.
3, e103 (2017)

21. Mondal, I., Hou, Y., Jochim, C.: End-to-end NLP knowledge graph construction.
arXiv preprint arXiv:2106.01167 (2021)

22. Pacheco, M.L., von Hippel, M., Weintraub, B., Goldwasser, D., Nita-Rotaru, C.:
Automated attack synthesis by extracting finite state machines from protocol spec-
ification documents. arXiv preprint arXiv:2202.09470 (2022)

23. Shanthamallu, U.S., Spanias, A., Tepedelenlioglu, C., Stanley, M.: A brief sur-
vey of machine learning methods and their sensor and IoT applications. In: 2017
8th International Conference on Information, Intelligence, Systems & Applications
(IISA), pp. 1–8. IEEE (2017)

24. Shelby, Z., Hartke, K., Bormann, C.: The constrained application protocol (CoAP).
http://datatracker.ietf.org/doc/html/rfc7252 (2014). Accessed 04 Aug 2022

25. Singh, A.K.: We will be surrounded by 500 billion connected devices by 2030,
says anter virk of subcom. https://opportunityindia.franchiseindia.com/article/
we-will-be-surrounded-by-500-billion-connected-devices-by-2030-says-anter-virk-
of-subcom-35012 (2022). Accessed 28 Aug 2022

26. Soares, L.B., FitzGerald, N., Ling, J., Kwiatkowski, T.: Matching the blanks: dis-
tributional similarity for relation learning. arXiv preprint arXiv:1906.03158 (2019)

https://github.com/eclipse/californium
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc8174
http://arxiv.org/abs/2106.01167
http://arxiv.org/abs/2202.09470
http://datatracker.ietf.org/doc/html/rfc7252
https://opportunityindia.franchiseindia.com/article/we-will-be-surrounded-by-500-billion-connected-devices-by-2030-says-anter-virk-of-subcom-35012
https://opportunityindia.franchiseindia.com/article/we-will-be-surrounded-by-500-billion-connected-devices-by-2030-says-anter-virk-of-subcom-35012
https://opportunityindia.franchiseindia.com/article/we-will-be-surrounded-by-500-billion-connected-devices-by-2030-says-anter-virk-of-subcom-35012
http://arxiv.org/abs/1906.03158

Detecting Contradictions from CoAP RFC Based on Knowledge Graph 189

27. Tian, C., Chen, C., Duan, Z., Zhao, L.: Differential testing of certificate validation
in SSL/TLS implementations: an RFC-guided approach. ACM. Trans. Softw. Eng.
Methodol. 28(4), 1–37 (2019).https://doi.org/10.1145/3355048

28. Uddin, H., et al.: IoT for 5g/b5g applications in smart homes, smart cities, wear-
ables and connected cars. In: 2019 IEEE 24th International Workshop on Computer
Aided Modeling and Design of Communication Links and Networks (CAMAD), pp.
1–5. IEEE (2019)

29. Wang, K., Bai, G., Dong, N., Dong, J.S.: A framework for formal analysis of pri-
vacy on SSO protocols. In: Lin, X., Ghorbani, A., Ren, K., Zhu, S., Zhang, A.
(eds.) SecureComm 2017. LNICST, vol. 238, pp. 763–777. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78813-5_41

30. Wang, Q., et al.: {MPInspector}: A systematic and automatic approach for evalu-
ating the security of {IoT} messaging protocols. In: 30th USENIX Security Sym-
posium (USENIX Security 21), pp. 4205–4222 (2021)

31. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of
approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743
(2017)

32. Xiao, L., Wan, X., Lu, X., Zhang, Y., Wu, D.: IoT security techniques based on
machine learning: how do IoT devices use AI to enhance security? IEEE Signal
Process. Mag. 35(5), 41–49 (2018)

33. Xie, D., et al.: DocTer: documentation-guided fuzzing for testing deep learning API
functions. In: Proceedings of the 31st ACM SIGSOFT International Symposium
on Software Testing and Analysis, pp. 176–188 (2022)

34. Xie, F., et al.: Scrutinizing privacy policy compliance of virtual personal assis-
tant apps. In: Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering (ASE) (2022)

35. Zhang, B., Xu, Y., Li, J., Wang, S., Ren, B., Gao, S.: SMDM: tackling zero-shot
relation extraction with semantic max-divergence metric learning. Appl. Intell. 1–
16 (2022). https://doi.org/10.1007/s10489-022-03596-z

36. Zhang, C., et al.: Towards better generalization for neural network-based sat
solvers. In: Gama, J., Li, T., Yu, Y., Chen, E., Zheng, Y., Teng, F. (eds) Advances in
Knowledge Discovery and Data Mining. PAKDD 2022. LNCS, vol. 13281. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-05936-0_16

https://doi.org/10.1145/3355048
https://doi.org/10.1007/978-3-319-78813-5_41
https://doi.org/10.1007/s10489-022-03596-z
https://doi.org/10.1007/978-3-031-05936-0_16

	Detecting Contradictions from CoAP RFC Based on Knowledge Graph
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 Related Work

	3 Problem Definition
	3.1 Entity, Rule and Relation
	3.2 Contradictions

	4 RFCKG Approach
	4.1 Rule Statement Extraction
	4.2 Knowledge Graph Construction
	4.3 Contradiction Detection

	5 Evaluation
	5.1 Knowledge Graph Construction
	5.2 Contradiction Detection

	6 Discussion and Future Directions
	7 Conclusion
	References

