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a b s t r a c t

Due to the boom of Internet of Things (IoT) in recent years, various IoT devices are connected to the
Internet and communicate with each other through network protocols such as the Constrained Applica-
tion Protocol (CoAP). These protocols are typically defined and described in specification documents,
such as Request for Comments (RFC), which are written in natural or semi-formal languages. Since
developers largely follow the specification documents when implementing web protocols, they have
become the de facto protocol specifications. Therefore, it must be ensured that the descriptions in them
are consistent to avoid technological issues, incompatibility, security risks, or even legal concerns. In
this work, we propose Neural RFC Knowledge Graph (NRFCKG), a neural network-generated knowledge
graph based contradictions detection tool for IoT protocol specification documents. Our approach can
automatically parse the specification documents and construct knowledge graphs from them through
entity extraction, relation extraction, and rule extraction with large language models. It then conducts
an intra-entity and inter-entity contradiction detection over the generated knowledge graph. We
implement NRFCKG and apply it to the most extensively used messaging protocols in IoT, including
the main RFC (RFC7252) of CoAP, the specification document of MQTT, and the specification document
of AMQP. Our evaluation shows that NRFCKG generalizes well to other specification documents and it
manages to detect contradictions from these IoT protocol specification documents.

© 2023 ISA. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The Internet of Things (IoT) is an emerging technology in
ecent years. It refers to devices and sensors that are uniquely
ddressable based on their communication protocols, and are
daptable and autonomous with inherent security [2]. Its devel-
pment is closely connected to many cutting-edge technologies
uch as blockchain [3,4], smart home [5], and machine learn-
ng [6–8]. During the past decade, IoT applications have experi-
nced rapid growth and have been successfully applied on both
ndividual (e.g., e-health, and smart home) and professional levels
e.g., smart supply chain, smart city, and industry IoT) [9,10].

✩ This work extends the preliminary results presented in [1]. It includes a
more generic approach for constructing a knowledge graph through utilizing
large language models in model pre-training (Section 4.1), entity extraction
(Section 4.2), and rule extraction (Section 4.3). It also includes more extensive
experiments and evaluation on various specification documents (Section 5).
∗ Corresponding author.
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It is estimated that there will be over 500 billion IoT devices
connected to the Internet by 2030 [11].

IoT devices communicate through the corresponding web pro-
ocols, which are defined by the specification documents. Efforts
ave been made to process specification or specification-like
ocuments using rule-based approaches. Tian et al. [12] build
inite state machine for protocol implementation testing by pro-
essing RFC documents to extract the states. Andow et al. [13]
uild ontology to detect the contradictions in application pri-
acy policy documents on the personal information being col-
ected. Xie et al. [14] detect compliance issues on Alexa skills
rivacy policy documents by extracting keywords mentioning
ata types being collected by developers. However, the issue of
ontradictions within the web protocol specification documents
s largely unexplored; these contradictions can lead to erroneous
mplementations and confusion for developers.

Identifying these contradictions from protocol specification
ocuments faces several unique challenges. First, unlike struc-
ured specification documents, such as API documentations, pro-

ocol specification documents do not have specific fields that
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ontain certain information that can be easily collected with
he existing rule-based approaches. Typical information such as
he data objects mentioned in the document and the techni-
al requirements are written in unstructured or semi-structured
atural languages, which vary in different forms of phrases to
escribe the functionalities of the protocol, making it hard for
rule-based approach to identify them. Second, the semantics
ncoding of these requirements demands the preservation of the
orrect information and sentiment for contradiction detection
ogic. Requirements that have similar vocabularies but have dif-
erent or even opposite semantics might be wrongly transformed
nto similar encodings. Such an error will propagate and affect
he contradiction detection process. Third, requirements that are
or the same data object can locate in different positions of the
ocument. Inter connection needs to be built to relate them
ogether.

In this work, we propose NRFCKG, an approach for automati-
ally detecting contradictions within a web protocol specification
ocument by constructing a knowledge graph for the document
nd by formalizing the detection process into a constraint sat-
sfaction problem. We construct the knowledge graph through
ntity extraction, relation extraction, and rule extraction to struc-
urally represent the document by utilizing state-of-the-art large
anguage models. We formalize the problem to a constraint sat-
sfaction problem and solve it with an SMT solver. We apply
RFCKG to the specification documents of the most extensively
sed web protocols in IoT, which are RFC7252 of CoAP, MQTT
pecification document and AMQP specification. NRFCKG detects
four contradictions from RFC7252 and one contradiction from
MQTT specification document.

We summarize our contributions as follows:

• An automated approach to detecting contradictions from
specification documents. To our best knowledge, we are
the first to propose an approach to detecting contradic-
tions from IoT protocol specification documents. We pro-
pose NRFCKG which features automated knowledge graph
construction for contradiction detection.
• Representing specification document as a knowledge

graph. We identify the essential components for construct-
ing a knowledge graph from web protocol specification
documents, such as entities, relations, and rules. We utilize
various large language models to extract these components
and construct the knowledge graph. We evaluate the per-
formance of NRFCKG on these tasks and show that it can
generalize well to other specification documents.
• Formalizing contradiction detection as a constraint satis-

faction problem. We define the types of contradictions and
formalize the contradiction detection process as a constraint
satisfaction problem, which can be solved with an SMT
solver.
• Revealing contradictions in specification documents. We

demonstrate that NRFCKG can successfully detect contra-
dictions from various real-world specification documents,
which shows the soundness and the generalization of our
approach. It detects four contradictions from RFC7252 and
one contradiction from MQTT specification document. Our
findings reveal that contradictions do exist in specification
documents, even though they are usually considered to have
been thoroughly reviewed before release.

2. Background and related work

In this section, we present the background knowledge to facil-
itate the understanding of our work, and summarize the related
work that inspires this work.
11
2.1. Background

Protocol specification documents. Web protocol specification
documents describe the technical details of a web protocol. They
are usually written by engineers or computer scientists to de-
scribe the methods, behaviors, or innovations of web protocols
in natural languages. Developers who wish to implement the
protocol or users who wish to utilize the implementations should
always refer to the specification document that defines the pro-
tocol.
Knowledge graph. A knowledge graph is a multi-relational graph
constructed with nodes (entities) and edges (relations), where
each edge indicates the two entities are connected with a specific
relation [15].
Large language models. Since the introduction of the Trans-
former [16] deep neural network architecture, there has been
several significant work that adopts this architecture to train
variate large language models with a large number of parameters,
such as the BERT family (BERT [17], RoBERTa [18], DeBERTa [19],
etc.) as language encoders and the GPT family (GPT [20], GPT-
2 [21], GPT-3 [22], etc.) as language decoders. These large lan-
guage models achieve state-of-the-art performance on several
Natural Language Processing (NLP) tasks. Although large language
models like BERT and GPT are trained on large-scale datasets,
they perform well on downstream tasks with general text data.
For encoders like BERT, they are usually further pre-trained with
domain specific text data before applying them to domain spe-
cific downstream tasks in order to achieve better performance.
Rasmy et al. [23] further pre-train BERT with electronic health
record data for predicting heart failure and pancreatic cancer.
Feng et al. [24] further pre-train BERT with programming code
data for natural language code search and code documentation
generation. Chalkidis et al. [25] further pre-train BERT with legal
documents data to assist with legal NLP research, computational
law, and legal technology applications.

2.1.1. Related work
Knowledge graph representation for documents. Li et al. [26]
construct a knowledge graph from Android API documents, which
can be easily accessed by developers. Mondal et al. [27] propose
a way to conduct an end-to-end knowledge graph construction
on NLP related papers to describe NLP tasks and their eval-
uations. Typical tasks for constructing a knowledge graph are
entity extraction and relation extraction. Although there exist
some tools [28–30] for these tasks, they are usually for general
purposes. It is unlikely that they would work well with tasks
that are domain-specific without further injecting the domain
knowledge.
Rule extraction from specification documents. Rules in specifi-
cation documents define the functionalities and behaviors of the
protocol. The natural language writing style of rules is specified in
RFC2119 [31]. In particular, it defines the modal
keywords to indicate the requirement levels for rules [12]. Fur-
thermore, RFC8174 [32] emphasizes the usage of uppercase let-
ters for modal keywords defined in RFC2119. Tian et al. [12]
extract the rules with keyword matching and use dependency
parsing to process the rules. Dependency parsing is also studied
in other work such as [33]. It works well with simple sentences
but suffers with complicated sentences with multiple objects or
multiple subordinate clauses.
Different representations for specifications. Andow et al. [13]
construct an ontology on applications’ privacy policy documents
and check for logical contradictions (e.g. ‘‘Not collecting per-
sonal information’’ contradicts with ‘‘but collecting email address’’),
which is the main inspiration for our work. However, its main
focus is on privacy policy documents. The data types they extract
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re different from the data types in specification documents.
ang et al. [34] utilize traffic, documents, and configurations of

everal IoT protocols and construct the finite state machines to
valuate their security. Pacheco et al. [35] also construct finite
tate machines of protocols from documents to perform attack
ynthesis. These finite state machine representations only focus
n run time dynamics and ignore static properties. However, in
specification documents, there are many static properties of
ntities that describe technical details. Our work aims to handle
pecification document related data types (entities, relations)
nd extract static properties that describe the protocol technical
etails.
ontradiction detection for specifications. Harabagiu et al. [36]
ropose an approach to recognize negation, contrast and con-
radictions for general text. Xie et al. [14] study the privacy
olicy compliance issue of virtual personal assistant apps. Wang
t al. [37] propose a formal analysis framework to detect spec-
fication contradictions in single sign-on protocols. Mahadewa
t al. [38] explore contradictions in privacy policy on trigger-
ction integration platforms. Another recent study by Meng et al.
39] proposes a systematic analysis methodology to scrutinize the
ompliance of mobile operating systems in protecting users’ pri-
acy. However, recognizing contradictions in specification docu-
ents, such as Requests for comments, has not been well studied.
ulnerability detection for implementation. Existing vulnera-
ility detection methods focus on the implementation level. In
articular, machine learning and deep learning techniques play
n important role. Feng et al. [40] present methods for detecting
ulnerabilities of IoT devices directly from the firmware. Zhang
t al. [41] and Sun et al. [42] present deep learning methods
or detecting cyber attacks and incidents. Lin et al. [43] also
resent deep learning methods for detecting software vulner-
bilities. Qiu et al. [44] present machine learning methods for
etecting Android malware.
etection with various data formats. There are also existing
etection methods with various data formats for different pur-
oses, but serve as study examples. Mangla et al. [45] propose
misbehavior detection framework for cooperative intelligent

ransport system. Zhu et al. [46] propose a transformer-based
ethod for machinery diagnosis.

. Problem definition

Web protocol specification documents are written in unstruc-
ured natural languages. NRFCKG parses them and generates
nowledge graphs that can be automatically checked for contra-
ictions. In this section, we first define the components of the
nowledge graph (Section 3.1), and then we present the types of
ontradictions we target to detect in this work (Section 3.2).

.1. Entity, rule and relation

The knowledge graph generated by NRFCKG consists of three
omponents, i.e., entity, rule and relation, where the entities and
he rules are represented as nodes, and the relations are repre-
ented as edges.
ntity. We refer to an entity as an object in web protocols that
as functionalities or behaviors being described. Commonly used
ntities include ‘‘message’’, ‘‘options’’, ‘‘token’’, etc. We use a single
ield data structure to represent an entity node in the knowl-
dge graph: Entity(name). For example, the entity ‘‘confirmable
essage’’ is represented as Entity(confirmable message).
ule. A rule node consists of a set of atomic rules appearing in
he same rule statement, concatenated by logical connective ‘‘∧
AND)’’, ‘‘∨ (OR)’’, ‘‘⊻ (XOR)’’ and ‘‘¬ (NEGATION)’’. We define an
tomic rule as a four-tuple data structure:

{variable, operator, value}, necessity),
12
Fig. 1. NRFCKG’s knowledge graph representation of an example statement in
FC: ‘‘If the version number of a message is set to 1, the options of the message
UST NOT be cached and the options MUST be critical’’.

n which {variable, operator , value} represents the rule content,
nd the necessity represents the requirement level, including

‘‘STRONG’’ and ‘‘WEAK’’, where ‘‘STRONG’’ indicates an absolute
requirement level such as ‘‘MUST’’, ‘‘REQUIRED’’, ‘‘SHALL’’, ‘‘MUST
NOT’’, and ‘‘WEAK’’ indicates an optional requirement such as
‘‘NOT RECOMMENDED’’, ‘‘MAY’’ and ‘‘OPTIONAL’’. For example, in
the statement: ‘‘Message version number MUST be set to 1 and the
options of the message MUST be cached’’, the extracted rule is:

({version_number == 1}, STRONG)
∧ ({cached_options == TRUE}, STRONG)

elation. The relations NRFCKG targets to extract from RFCs
nclude (1) the relation between an entity and an entity, e.g., ‘‘A
ersion number [entity] is a field of [relation] a message [entity]’’,

(2) the relation between an entity and a rule, e.g., ({version_number
== 1}, STRONG) [rule] is a rule of [relation] Confirmable message
[entity], and (3) the conditional relation between two rules. For
example, in the statement ‘‘If the version number of a message
is not set to 1, the options of the message MUST NOT be cached’’,
{version_number! = 1}, STRONG) [rule] is a condition of [rela-
tion] ({cached_options == FALSE}, STRONG) [rule]. The former is
the antecedent rule and the latter is the consequent rule.

Fig. 1 illustrates the KG representation of the rule statement
‘‘If the version number of a message is set to 1, the options of the
message MUST NOT be cached and the options MUST be critical’’.

3.2. Contradictions

The core idea of NRFCKG is to represent an unstructured
pecification document under analysis as a structured knowledge
raph, to formalize this as a constraint satisfaction problem, and
hen to solve it with an SMT solver. If the constraint is unsatisfi-
ble, NRFCKG reports a contradiction. In particular, we define two

types of contradictions as follows:

• Direct contradiction. This occurs when different rules of
the same entity e - denoted as {r1, . . . , rn}e contradict each
other. That is, the conjunction of rules is evaluated as unsat-
isfiable, i.e.,
n⋀
{ri}e == unsat
i=1
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A direct contradiction is regarded as an erroneous contradic-
tion of a specification document which may lead to imple-
mentation issues. This contradiction captures the following
three scenarios.
(1) Contradiction among plain rules. A plain rule refers to
a rule that is not an antecedent rule or consequent rule. For
example, consider the following rule statements ‘‘The version
number of a message MUST be set to 1’’ and ‘‘Message version
number MUST be 0’’. The rules for these rule statements
are ({version_number == 1}, STRONG) and ({version_number
== 0}, STRONG). These are plain rules as they are not an-
tecedent rules or consequent rules. We concatenate them
and see that they evaluate as unsatisfiable.

(version_number == 1)∧ (version_number == 0) == unsat

(2) Contradictions between plain rule and consequent
rule. It occurs when a plain rule states ‘‘A must be True’’,
while a consequent of a conditional rule states ‘‘A is False’’.
For example, consider the following rule statements ‘‘The
version number of a message MUST be set to 1’’ and ‘‘If the
options of the message are cached, the version number of the
message MUST be set to 0’’. The rule extraction and evaluation
are the same as in the example above, but the contradiction
is between a plain rule and a consequent rule.
(3) Contradictions between the consequent of conditional
rules. For example, two conditional rules state the same
antecedent while implying a contradicted consequent. For
example, consider the following rule statements ‘‘If the op-
tions of the message are not cached, the version number of the
message MUST be set to 1’’ and ‘‘If the options of the message
are not cached, the version number of the message MUST be
set to 0’’. The rule extraction and evaluation are the same as
in the example above, but the contradiction is between two
consequent rules that serve the same antecedent rule.
• Conditional contradiction. This occurs when the antecedent

of conditional rules contradicts plain rules. Denoting ci as
an antecedent rule of a conditional proposition, NRFCKG
reports a conditional contradiction if
n⋀

i=1

{ri, ci}e == unsat.

For example, consider the following rule statements ‘‘Mes-
sage version number SHOULD be set to 1’’ and ‘‘If the version
number of a message is not 1, the options MUST be cached’’.
The rule for the first statement is ({version_number == 1},
STRONG), which is a plain rule. The antecedent rule for the
second statement is ({version_number != 1}, STRONG). We
concatenate them and the combined constraint is evaluated
as unsatisfiable.

(version_number == 1) ∧ (version_number ! = 1) == unsat

The conditional contradictions extracted by NRFCKG can
highlight the instruction of error handling in specification
document, which is likely ignored by the developers espe-
cially when such statements appear in different places in the
document.

4. Approach

We design NRFCKG as a four-phase approach that consists
of language model pre-training, entity recognition and relation ex-
traction, rule extraction, and contradiction detection. The overall
approach is shown in Fig. 2.
13
4.1. Language model pre-training

We first pre-train BERT with the specification documents
of the three most extensively used IoT protocols, which are
CoAP [47–50], MQTT [51] and AMQP [52]. We split the documents
into individual sentences using the NLP tool Natural Language
Toolkit (NLTK) [53], and pre-train the case-sensitive BERT
base model with its original pre-training tasks, which are MLM
and NSP. Through this, the pre-trained BERT model can produce
IoT domain specific contextual embeddings. We refer to this
pre-trained model as IoT-BERT.

4.2. Entity recognition and relation extraction

In this phase, we aim to train a model to construct a skele-
ton knowledge graph to represent the protocol described in the
specification document. There are two main components, which
are entity recognition and relation extraction. Note that this phase
only uses RFC7252 as training data.

We refer to an entity in a web protocol as an object that has
some functionalities or some properties in the web protocol, such
as ‘‘message’’, ‘‘token’’, ‘‘version number ’’, and so on. To prepare
the data for training the model, we first pre-process RFC7252 by
removing irrelevant parts of the document, such as the abstract,
copyright notice, table of content, figures, tables, and references.
We then use NLTK [53] to split the document into individual
sentences. We use the BERT Tokenizer from Hugging Face [54]
to tokenize each sentence. We use the BIO Tagging approach [55]
to conduct data labeling on a token level. Similar to any Name
Entity Recognition task, for each token in a sentence, we label
it as either the beginning of an entity (class 0), the inside of an
entity (class 1), the outside of an entity (class 2) or the padding
token (class 3). For example, consider the tokenized sentence
‘‘These messages are called Confirmable messages PAD PAD PAD’’.
To simplify the demonstration, this example assumes that each
word is one token, although this is usually not the case with a
WordPiece tokenizer [17], such as the one BERT uses. The labels
we give to this sentence are [2, 0, 2, 2, 0, 1, 3, 3, 3], as the
first ‘‘messages’’ token is the beginning of an entity and it is a
complete entity by itself. The ‘‘Confirmable’’ token is the beginning
of an entity, and the second ‘‘message’’ token is the inside of an
entity. The rest are either the outside of any entity or padding
tokens. We then take the BERT for token classification model
from Hugging Face [54], which is a BERT model with an extra
token classification layer, and substitute the layers of the BERT
model with the layers of the pre-trained IoT BERT model. We then
use the annotated data to train an entity extractor for extracting
entities from web protocol specification documents. After we
extract the entities, we examine each possible pair of extracted
entities, and identify the relation for them from the predefined
list: no relation, equivalent, field, type, and feature. For example,
Confirmable message is a type of message.

4.3. Rule extraction

An entity has properties that serve as the functionalities of the
web protocols. In this phase, we extract these properties from
the rule statements and represent them as rules. There are three
main steps, which are rule statement extraction, condition split and

property identification.
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Fig. 2. Overview of approach showing four phases.
Table 1
Modal keywords for extracting rule statements.
STRONG keywords WEAK keywords

MUST, REQUIRED, SHALL,
MUST NOT, SHALL NOT

SHOULD, RECOMMENDED, SHOULD NOT, NOT
RECOMMENDED, MAY, OPTIONAL
4.3.1. Rule statement extraction
RFC2119 [31] states that in many standards track documents,

everal keywords are used to signify the requirements in the
pecification. We refer to the statements that contain these key-
ords as rule statements, as they are the requirements that need
o be followed. Since the release of RFC2119 (which specifies
he standard for keywords usage in RFCs to indicate require-
ent levels, but also generalizes to all web protocol specification
ocuments) in 1997 [31], specification documents (released after
997) enforce the use of capitalized modal keywords (such as
‘MUST’’, ‘‘MAY’’ and etc.) to indicate the requirement level of a
ule in the specification. We therefore examine the capitalized
odal keywords used in RFC7252 and identify the sentences that
ontain those capitalized modal keywords as rule statements.
hese rule statements are the base sentences for extracting and
onstructing the rules. More specifically, we extract the strong
tatements and weak statements based on the modal keywords
s shown in Table 1, following the definition from a related
tudy [12]. Algorithm 1 in Appendix demonstrates this process.

.3.2. Condition split
In a rule statement, there can exist a part of it that serves as

he antecedent and another part that serves as the consequent.
onsider the following rule statement ‘‘If the request to the des-
ination times out, then a 5.04 (Gateway Timeout) response MUST
e returned’’, where ‘‘If the request to the destination times out ’’
s the antecedent, and ‘‘then a 5.04 (Gateway Timeout) response
UST be returned’’ is the consequent. We note that there also can
e a conditional relation in a rule statement that is not specified
ith explicit keywords such as ‘‘if ’’ and ‘‘when’’. For example,
onsider the following rule statement ‘‘Messages with unknown
ersion numbers MUST be silently ignored’’. The implicit antecedent
n this rule sentence is ‘‘Messages with unknown version numbers’’
nd the consequent is ‘‘MUST be silently ignored’’. As such, NRFCKG
eeds to identify both the explicit conditional relation and the
mplicit conditional relation in the rule statements.

To this end, we take use of the GPT-2-xl model [21] from
ugging Face [54], which is the original GPT-2 model for text
eneration. Given a rule statement, we fine-tune this model to
enerate the underlying antecedent and consequent for this rule
tatement, if there exists any. For each of the rule statements
rom RFC7252, we construct the training text data as a string
ith three mandatory fields, which are ‘‘Statement ’’, ‘‘Antecedent ’’
nd ‘‘Consequent ’’. For example, for the rule statement ‘‘Messages
ith unknown version numbers MUST be silently ignored’’, the
onstructed string would be:
14
Statement: Messages with unknown version numbers MUST be
silently ignored
Antecedent: Messages with unknown version numbers
Consequent: MUST be silently ignored

Note that this is one complete string and there is an explicit
line separator after each field. If there is no conditional relation
in a rule statement, we simply put ‘‘Not applicable’’ after the
‘‘Antecedent ’’ field and the ‘‘Consequent ’’ field.

We then use this constructed text data to fine tune the model
with the Next Token Prediction task as an antecedent and con-
sequent extractor that can identify the underlying conditional
relation within a rule statement. Given an unseen rule statement,
we construct a text string with the ‘‘Statement ’’ field filled with
the rule statement, but leave the part after the ‘‘Antecedent ’’ field
blank as a prompt for the model to generate the rest. Notice
that we only construct the prompt up the ‘‘Antecedent ’’ field, as
the prompt is fed into the model as a string. After the model
generates the antecedent, it will generate the consequent of the
statement starting with a ‘‘Consequent ’’ keyword.

4.3.3. Property identification
In this step, we extract the properties of an entity described

in a rule statement. For example, for the antecedent rule state-
ment ‘‘Messages with unknown version numbers’’, the property is
‘‘unknown version numbers’’. For the consequent rule statement
‘‘MUST be silently ignored’’, the property is ‘‘be silently ignored’’.
These properties are usually described as phrases in the rule
statement, but their forms vary and it is difficult to define syn-
tactical patterns to extract them. Also, we extract these prop-
erties and point them to the corresponding entities. For the
above example, the property ‘‘unknown version numbers’’ should
be pointed to the entity ‘‘version number ’’, and the property ‘‘be
silently ignored’’ should be pointed to the entity ‘‘message’’.

We use the GPT-2-xl model [21] from Hugging Face [54] and
fine-tune this model to generate the underlying properties in a
rule statement. The training task is Next Token Prediction we
fine-tune this model to recognize our defined properties pattern.
For a rule statement, we first backtrack five sentences in the
original document and append them to the front of the statement
to construct a context. If the rule statement is an antecedent
or consequent after being processed from the last step, we also
append the original rule statement to the context. This is useful
as we also want to assign the properties to entities. It is common
in natural languages to use pronouns or phrases starting with
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eywords such as ‘‘this’’, ‘‘that’’, and so on, to refer to something
hat has been mentioned earlier. In some cases, given a single
ule statement, it is not sufficient to decide which entities the
roperties should be pointed to.
For each of these rule statement contexts, we then construct

he text string with three mandatory fields, which are ‘‘Context ’’,
‘Statement ’’, and ‘‘Properties’’. For example, for the antecedent
ule statement ‘‘Messages with unknown version numbers’’, the
onstructed string would be:

Context: (Five sentences before rule statement, plus the original
rule statement before condition split)
Statement: Messages with unknown version numbers
Properties: version number @ unknown version number = True;

For the consequent rule statement ‘‘MUST be silently ignored’’,
he constructed string would be:

Context: (Five sentences before rule statement, plus the original
rule statement before condition split)
Statement: MUST be silently ignored
Properties: message @ be silently ignored = True;

We then use this constructed text data to fine-tune the model
ith Next Token Prediction task as a property extractor that can
xtract the underlying properties and point them to correspond-
ng entities. Given an unseen context and statement, we construct
text string with the ‘‘Context ’’ field filled with the context and

he ‘‘Statement ’’ field filled with the rule statement, but leave the
art after the ‘‘Properties’’ field blank as a prompt for the model

to generate the rest. If it generates any property that does not
match that specific format, we filter the generated property out.

Note that the entity extractor and the property extractor are
different. The entity we generate with the property extractor
is usually the subject that the property is describing and is a
candidate entity. We add an extra step here to match it to the
entities that the entity extractor extracts as they are specifically
for the task and should be more accurate. For an entity–property
pair generated by the property extractor, we take the candi-
date entity part and pass it through the pre-trained Phrase-BERT
model [56], which is a BERT model with dedicated pre-training
tasks to generate phrase embedding, to get an embedding vector
for the candidate entity. We also pass all the entities extracted by
the entity extractor through Phrase-BERT to get their embedding
vectors. We then calculate the cosine similarities between them
and select the most similar one as the entity we point the prop-
erty to. If there is no such entity that has a similarity larger than
0.9, we leave it as it is.

For an entity, there could be many properties in variant forms
of phrases. We need to further normalize them as some of them
can be actually describing the same behaviors and therefore
should be normalized as one property. We pass the extracted
properties into Phrase-BERT, calculate the cosine similarities, and
group them as one if it is larger than the 0.9 threshold. There
exist situations where two properties phrases are similar in the
embedding vector space, but they actually have different mean-
ings. Consider the property phrases ‘‘unknown version number =
rue’’ and ‘‘set the version number to 1 = True’’, where the first
roperty states that the version number is unknown and the
econd property states that the version number is one, which has
otally different meaning. However, they have very high similarity
n the vector space and can be grouped as one property easily.
o address this, we examine the properties we annotate for rule
15
statements in RFC7252 and define a list of patterns to further pro-
cess the extracted properties. We define two common properties
for an entity, which are ‘‘value’’ and ‘‘error ’’. The ‘‘value’’ property
describes the entity value and the ‘‘error ’’ property describes the
error handling case for an entity. For the example above, after
further processed by the patterns, they will be transformed as
‘‘value = unknown’’ and ‘‘value = 1’’, both being pointed to the
entity ‘‘version number ’’. For the rest of the properties phrases
that do not fall into these patterns, we leave them as dynamic
properties.

With all the steps combined, we have a property extractor that
can generate the underlying candidate entities and the properties,
match the candidate entities to the more accurate entities, and
normalize the properties. After this, we can now construct the
rule nodes in the knowledge graph. Recall that we define an
atomic rule as a four-tuple data structure:

({variable, operator, value}, necessity)

For every property, we take the property phrase as the variable,
the operator as the operator, and the value as value. The necessity
comes from the requirement level of the original rule statement.
If the rule statement is a STRONG statement, then its necessity
is STRONG. Otherwise, it is WEAK. For each rule statement, we
connect all the atomic rules with logical connective ‘‘∧ (AND)’’
or ‘‘∨ (OR)’’. We determine this by searching if there is an ‘‘or’’
keyword in the original rule statement. If there is, then the logical
connective is set as ‘‘∨ (OR)’’. Otherwise, it is set as ‘‘∧ (AND)’’.
After this, we have all the rule nodes constructed. We then con-
nect them to the entities they are pointed to with an edge with a
‘‘rule’’ relation. For the rule nodes that have a conditional relation,
we connect them with an edge with a ‘‘condition’’ relation. The
knowledge graph is complete at this stage and it is ready to be
used for contradiction detection.

4.4. Contradiction detection

We now describe the contradictions detection step with the
knowledge graph constructed above. We do contradictions de-
tection on the entity level. Recall that each atomic rule within
a Rule node is constructed with the variable, the operator and
the value. We first iterate through all the atomic rules under the
same entity and use the Z3 solver [57] to create a literal for each
unique variable. We then also transformed each unique value to
a unique real number (if the unique value is not a real number
originally, we choose a seed then generate the transformed value
from the seed), as the solver can only accept literals with the
same type. We then encode these variable and value pairs as con-
straints according to their operators. For these constraints within
the same Rule node, we connect them with their corresponding
logical connective ‘‘AND’’ ∧ or ‘‘OR’’ ∨.

Recall that there are three types of direct contradictions. For
the first type of direct contradiction, for each entity node, we ex-
tract all the plain rules. We enumerate all the plain rule pairs and
connect the constraints within them with the logical connective
‘‘AND’’ ∧, and see if the result is evaluated as satisfactory or not.
For the second type and third type of direct contradictions, we
simply substitute the rule pairs to plain–consequent rule pairs
and consequent rule pairs under the same antecedent rule.

For conditional contradictions, the process is also similar. For
each entity node, we extract all the plain rules and the antecedent
rules. We enumerate all the plain–antecedent rule pairs and
connect the constraints within them with the logical connective
‘‘AND’’ ∧, and see if the results are evaluated as satisfactory or
not.

Algorithm 2 in Appendix demonstrates the process for detect-
ing direct contradiction type 1 as an example.
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Table 2
Statistics of sentences and rule statements used for experiments from three
specification documents, where 20% of the rule statements from MQTT (63) and
AMQP (67) are used.

CoAP MQTT AMQP

Sentence 1280 1668 1323
Rule Statement 217 63/317 67/334

5. Evaluation

We evaluate the performance of our approach in two phases.
he first phase mainly focuses on entity recognition, condition
plit, and property identification tasks for CoAP, MQTT and AMQP
pecification documents. We randomly sample 20% of the rule
tatements from the latter two specification documents and per-
orm a benchmark evaluation on these tasks. The second phase
ocuses on detecting potential contradictions in all three specifi-
ation documents.
The three specification documents we choose are for the most

ommonly and extensively used IoT protocols. For most of the
ther existing IoT protocols specification documents, they are
ither very outdated or not commonly used. They are not rep-
esentative specification documents and we exclude them in the
xperiment.

.1. Experiment setup

We split RFC7252 into 1280 sentences, and extract 217 rule
tatements from them. For the entity recognition task, we anno-
ate all 1280 sentences. For the condition split task, we annotate
he 217 rule statements to indicate if there is a condition relation
n the statements. For the property identification task, we first
urther split the antecedent and consequent statements, resulting
n 355 statements, and annotate them to indicate the entities and
he properties in the statements.

We have randomly sampled 90% of rule statements from CoAP
s training data. We then take the rest of the rule statements from
oAP and 20% of the rule statements from MQTT and AMQP as
enchmarks to evaluate the three tasks mentioned above. Table 2
ummarizes the statistics for the sentences and rule statements
sed in the experiment. For the contradiction detection task,
e manually examine the original sentences associated with the
ontradicted rules reported by NRFCKG and determine if it is a
rue positive. All experiments are performed on a ThinkStation
620 with two NVIDIA RTX A6000 GPUs running Ubuntu OS.

.2. Benchmark results

Table 3 summarizes the results of entity recognition, and
able 4 summarizes the results of condition split and property
dentification. For entity recognition, we report the accuracy and
he macro F1 score. For condition split and property identifica-
ion, as they are generative tasks, we report the BLEU score, which
s a metric for evaluating the quality of the generated text with a
alue between 0 and 1. The formula to calculate BLEU score is as
ollows:

LEU(R; C) = emax(0, rc −1) · exp(
∞∑
n=1

wn ln pn(R; C)),

where R denotes the reference text, C denotes the candidate
(generated) text, r denotes the length of the reference text, c
denotes the length of the candidate text, w denotes the weight for
an n-gram of tokens, and p denotes the precision for an n-gram
of tokens.
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Table 3
Entity Recognition performance of NRFCKG.

Accuracy F1 Score

CoAP 0.99 0.94
MQTT 0.98 0.85
AMQP 0.99 0.78

Table 4
BLEU Score of Condition Split and Property Identification.
Task Protocol BLEU

Condition Split
CoAP 0.69
MQTT 0.71
AMQP 0.73

Property Identification
CoAP 0.71
MQTT 0.75
AMQP 0.69

Overall, the results show that the models we train on RFC7252
generalize well to other specification documents, with either high
accuracy and F1 score, or high BLEU score, depending on the
tasks.

Our benchmark results demonstrate the effectiveness of NR-
CKG. First, the pre-training of BERT allows the model to adapt
o the contextual semantics of this domain specific lingo environ-
ent prior to any actual training. Second, the entities in different
rotocols are similar as they follow some general patterns. For ex-
mple, in CoAP, ‘‘Confirmable message’’ is an entity, while in MQTT,
‘Subscriber message’’ is an entity. The overlapping part ‘‘message’’
s already a big indicator that this phrase could be an entity. Also,
he model predicts if these tokens are an entity considering the
emantics of different tokens in the same sentence. Given what is
eing described in the sentence, such as a functionality of a type
f message, it provides more information for the model to make
prediction.

.3. Contradiction detection results

Table 5 summarizes the number of true positive and false
ositive contradictions detected from RFC7252, MQTT and AMQP.
able 6 shows the original contradicted sentences for the true
ositive cases from the specification documents.
We detected four true positive contradictions out of eight

etected contradictions for CoAP, one true positive contradiction
ut of 11 detected contradictions for MQTT, and zero true posi-
ive contradiction out of two detected contradictions for AMQP.
or the direct contradiction detected in RFC7252, the original
ule statements are ‘‘Implementations SHOULD also support longer
ength identifiers and MAY support shorter lengths’’ and ‘‘Note that
he shorter lengths provide less security against attacks, and their use
s NOT RECOMMENDED’’. In the first statement, it states that the
horter lengths identifier MAY be supported. But in the second
tatement, it states that it is NOT RECOMMENDED. According to
FC2119 [31], these two keywords are at the same requirement
evel. It is confusing for the developers to decide if they should
mplement this functionality or not. If one implementation sup-
orts it and another does not, it might cause communication
ssues for the devices and the system might become vulnerable.
or the direct contradiction detected in MQTT specification docu-
ent, the original rule statements are ‘‘The Server MUST process
second CONNECT packet sent from a Client as a Protocol Error
nd close the Network Connection’’ and ‘‘If the Server rejects the
ONNECT, it MUST NOT process any data sent by the Client after the
ONNECT packet except AUTH packets’’. In the first statement, it
tates that the server MUST process the second CONNECT packet
s an error and close the connection, while the second statement
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Table 5
Number of detected contradictions from three specification documents.
Protocol Contradiction True Positive False Positive Document Total

CoAP Direct Contradiction 1 3 4
Conditional Contradiction 3 1 4

MQTT Direct Contradiction 1 4 5
Conditional Contradiction 0 6 6

AMQP Direct Contradiction 0 0 0
Conditional Contradiction 0 2 2

Total – 5 16 21
Table 6
Original rule statements for detected contradictions. ‘‘RE’’: requirement level, ‘‘D’’: direct contradiction, ‘‘C’’: conditional contradiction,
‘‘W’’: weak contradiction, ‘‘S’’: strong contradiction.
Protocol Rule 1 Rule 2 Type RE

CoAP Implementations SHOULD also
support longer length
identifiers and MAY support
shorter lengths

Note that the shorter lengths
provide less security against
attacks, and their use is NOT
RECOMMENDED

D W

The Token Length field MUST
be set to 0 and bytes of data
MUST NOT be present after the
Message ID field

If there are any bytes, they
MUST be processed as a
message format error

C S

The Token Length field MUST
be set to 0 and bytes of data
MUST NOT be present after the
Message ID field

Lengths 9-15 are reserved,
MUST NOT be sent, and MUST
be processed as a message
format error

C S

Implementations of this
specification MUST set this
field to 1 (01 binary)

Messages with unknown
version numbers MUST be
silently ignored

C S

MQTT The Server MUST process a
second CONNECT packet sent
from a Client as a Protocol
Error and close the Network
Connection

If the Server rejects the
CONNECT, it MUST NOT
process any data sent by the
Client after the CONNECT
packet except AUTH packets

D S
1
1
1
1
1
1
1

states that the server MUST NOT process any data except the
AUTH packets. Although the contradicted part in the second rule
statement has a condition and it is the consequent part, the first
statement is a plain rule and it is supposed to be satisfactory at
all times.

For the conditional contradictions detected, all of them are
iscussing the error handling situation. For example, the origi-
al rule statements for a conditional contradiction detected in
FC7252 are ‘‘The Token Length field MUST be set to 0 and bytes of
ata MUST NOT be present after the Message ID field’’ and ‘‘If there
re any bytes, they MUST be processed as a message format error ’’.
he first statement is a plain rule and it states that there MUST
OT be any data after the Message ID field. The second statement
tates that if there is any data after the Message ID field, it MUST
e processed as an error. These conditional contradictions worth
eing highlighted as an alert for the developers to pay attention
o in order to avoid any potential implementation issues.

For the false positive cases, we investigate them and find all
f them are caused by the incorrectly grouped variables, i.e., two
ariables that do not mean the same are grouped as one. Recall
hat we group variables by getting their vector representations
rom Phrase-BERT and comparing their similarities. The similarity
hreshold is a hyper-parameter which we can tune. Increasing the
imilarity threshold can lower the false positive rate because only
ery similar properties will be considered as one variable. But this
ould also make the tool miss the real same properties in differ-
nt expressions without a very high similarity score. We choose
.9 as the similarity threshold after several runs as it achieves a
ood trade off of revealing true positive cases and limiting the
alse positive cases. However, the model is limited to producing
ifferent vectors for variables that have different meanings but
ave similar semantics. We therefore recommend that further
17
Algorithm 1 Extracting rule statements from specification
document

Input: Preprocessed spec document S
Output: strong and weak rules statements sets

1: modal_keywords← [‘‘MUST ′′, ..., ‘‘MAY ′′, ‘‘OPTIONAL′′]
2: strong_modal_keywords← [‘‘MUST ′′, ..., ‘‘SHALL′′]
3: strong_rules_statements← [ ]
4: weak_rules_statements← [ ]
5: rfc_sentences← NLTK .split_sentences(S)
6: for i← 0, length(rfc_sentences) do
7: sentence← rfc_sentences[i]
8: for j← 0, length(modal_keywords) do
9: keyword← modal_keywords[j]
0: if keyword in sentence then
1: if keyword in strong_modal_keywords then
2: strong_rules_statements.append(sentence)
3: else
4: weak_rules_statements.append(sentence)
5: break
6: return strong_rules_statements, weak_rules_statements

confirmation should be conducted on the detected positive cases
when NRFCKG is used in practice. A possible direction to address
this problem is to further pre-train this model with more protocol
documents so that it can adapt to this domain specific contextual
environment and further produce better vector representation for
the variables to reduce the error rate.

We notice that there is a drop in the amount of true positive
contradictions being detected from MQTT and even none from
AMQP. We investigate this issue and find that MQTT and AMQP
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Algorithm 2 Check Direct Contradiction Type 1
Input: entity_rules_set, solver
Output: direct_contradictions_set

1: for i← 0, length(entity_rules_set) do
2: entity_rule_a← entity_rules_set[i]
3: constraint_expression_a← solver.create_constraint(entity_rule_a)
4: for j← 0, length(entity_rules_set) do
5: entity_rule_b← entity_rules_set[j]
6: constraint_expression_b← solver.create_constraint(entity_rule_b)
7: constraints = constraint_expression_a ∧ constraint_expression_b
8: if solver.solve(constraints) == unsat then
9: direct_contradictions_set.append((entity_rule_a, entity_rule_b))
0: solver.reset()
1: return direct_contradictions_set
specification documents are maintained and updated more fre-
quently. The specification document for MQTT we use is version
5.0 and there are three previous versions. The specification docu-
ment for AMQP we use is version 1.0 and there are four previous
versions. It is likely that the original contradictions have already
been noticed and fixed. Yet, our approach still manages to find
one true positive contradiction from MQTT.

In terms of true negative and false negative cases, we cannot
eport them as we do not know if there is any contradiction
n the specifications in advance. Our tool reports the cases that
annot be solved by the solver, then we evaluate the reported
ases manually to see if they are real contradictions. Reporting
rue negative and false negative cases will need ground truth
ontradictions in advance, which will require extensive human
abor. Our work serves as a warning tool that report suspicious
ases.

. Discussion

We now discuss the limitations of this work and some possible
uture directions.
elation extraction. In this work, we manually examine each
xtracted entity pair and assign a relation from the defined list of
elations. We try training a relation extractor by annotating more
han 10,000 sentences from enumerating all the entity pairs from
FC7252. Given an entity pair and a sentence that contains them,
he classifier needs to predict what is the underlying relation
etween. However, more than 80% of the data have a ‘‘No relation’’
elation, resulting in poor generalization of the classifier to other
pecification documents. Furthermore, relation extraction itself is
hard downstream task for NLP, as the classifier needs more

nformation than just a sentence that contains the entity pair
o predict the correct relation especially in technical documents
nd it requires intensive labor for annotation. This task requires
ore study and empirical experiments to justify what is the right
pproach to address the problem. Some possible future directions
ight be constructing a context environment by backtracking
ore sentences before the sentence that contains the entity pair

o provide more information to the classifier to make the right
rediction, or through some few-shot learning approach that does
ot require intensive data annotation.
ariable normalization. Most of the false positive contractions
eing detected are caused by the incorrectly normalized variables.
e used Phrase-BERT [56] as an embedding extractor to compute

he vector representation of the variables. However, this model is
ot further pre-trained. Further pre-training this model can po-
entially improve the embedding representations of the variables,
uch that the false positive rate can be decreased. Hu et al. [58]
resents state of the art methods that utilizes texture features to
etect events on social media platforms, which potentially can be

sed for extracting more complicated variables.

18
Different downstream tasks. Constructing a knowledge graph
for a specification document can serve different downstream
tasks. For example, with a complete knowledge graph of a proto-
col and a number of different implementations of the protocol,
we can apply fuzzing techniques [59] on the implementations
and see if they perform the same. If these is any discrepancy,
we can locate which part is different through traversing the
knowledge graph and further analyze if the implementations are
implemented correctly according to the embedded facts in the
knowledge graph.

7. Conclusion

In this work, we propose NRFCKG, a neural generated knowl-
edge graph based contradictions detection tool for IoT protocols
specification documents. We train it on RFC7252 of CoAP and
further apply it to MQTT and AMQP specification documents. We
evaluate its performance and show the generalizing ability of
this tool. We have successfully detected one direct contradiction
and three conditional contradictions from CoAP, and one direct
contradiction fromMQTT. We analyze the detected contradictions
and demonstrate that NRFCKG can serve as a general framework
for this task. We further propose a future direction for better
variable normalization by further pre-training Phrase-BERT with
more specification documents.
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Appendix. Rule statement extraction algorithm and direct con-
tradiction type 1 detection algorithm

See Algorithm 1 and 2.
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