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Abstract. The remarkable success of neural networks has led to a grow-
ing demand for robustness verification and guarantee. However, the dis-
crete nature of text data processed by language models presents chal-
lenges in measuring robustness, impeding verification efforts. To address
this challenge, this work focuses on formalizing robustness specification
against character-level perturbations for neural network language mod-
els. We introduce a key principle of three metrics, namely probability dis-
tribution, density, and diversity, for generalizing neural network language
model perturbations and meanwhile, formulate the robustness specifica-
tion against character-level perturbed text inputs. Based on the specifica-
tion, we propose a novel approach to augment existing text datasets with
specified perturbations, aiming to guide the robustness training of lan-
guage models. Experimental results demonstrate that the training with
our generated text datasets can enhance the overall robustness of the
language model. Our contributions advance the field of neural network
verification and provide a promising approach for handling robustness
challenges in neural network language models.

Keywords: Neural network · Language model · Character-level
perturbations · Adversarial training · Robustness

1 Introduction

The field of natural language processing (NLP) has been revolutionized by the
rapid advancements in neural network language models, especially after the
introduction of the Transformer architecture [28]. These models have demon-
strated remarkable performance across a range of NLP tasks, including machine
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translation [28], text classification [8], sentiment analysis [30], and text genera-
tion [25]. However, their vulnerability to adversarial attacks poses a significant
threat to the reliability and accuracy of NLP models.

Adversarial attacks can take many forms, ranging from minor perturbations
that are imperceptible to humans to more significant modifications that can
result in incorrect or misleading outputs. This vulnerability brings challenges to
the adoption of neural network language models in safe-critical domains such
as clinical diagnosis, financial services, infrastructure, and cybersecurity [33]. To
address these challenges, the training of a language model needs to take input
perturbations into account and guarantee the generated model is resilient to
adversarial attacks. However, discovering adversarial samples is expensive and
there is an infinite number of them in specific circumstances.

Robustness is a crucial property of language models that ensures they can
produce accurate or reasonable outputs even in the presence of perturbations in
the input. The capacity to withstand perturbations gives rise to the ability to
defend against adversarial samples, which is referred to as robustness training.
Rather than relying solely on adversarial samples that lead to incorrect outputs,
robustness training utilizes perturbed samples based on real samples to maintain
the local robustness for each sample. This is an inexpensive and straightforward
solution, and the challenge is to determine suitable perturbations for particular
attacks. The way in which the perturbation for neural language inputs is for-
malized has a direct impact on the ability to protect against a particular kind of
perturbed samples. Furthermore, formalizing the language model and its pertur-
bations takes a step further towards verifying them to guarantee their practical
implications. Given ϵ-perturbation has been widely adopted to measure local
robustness for continuous inputs, such as numbers, images, and voice, there still
lacks a measurement of the robustness specification for language models that
takes text as input.

In this paper, we consider that natural language text is formed by characters
as the atomic elements, and therefore we focus on robustness against character-
level perturbations. Our aim is to formalize a unified concept for the impercep-
tible character-level perturbations. We consider perturbations of text input can
be produced by three operations, namely insertion, deletion, and replacement, as
demonstrated in Fig. 1. We apply the three operations in an adversarial context
and propose four types of character-level attacks based on local perturbation. We
then introduce a set of metrics including probability distribution (P ), density (d),
and diversity (D), to measure the perturbations, and accordingly, provide a for-
mal definition of the robustness property against character-level perturbations.
In addition to defining the robustness property, our proposed set of metrics can
also be applied to augment existing text datasets by generating perturbed sam-
ples based on benign ones, which can be used to enhance the model’s robustness
through robustness training.

Our evaluation aims to investigate whether our proposed metrics, written as
(P, d,D), can sufficiently define the robustness property against character-level
attacks and, moreover, can be used to carry out robustness training. To this
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Fig. 1. Examples of character-level perturbations in English text

end, we apply the proposed metrics in augmenting existing text datasets with
perturbed samples, and perform robustness training of three representative neu-
ral network language models. The experimental results show that, being guided
by the defined robustness specifications, our robustness training can effectively
enhance robustness for the specified perturbation while maintaining a high level
of fidelity.

Contributions. Our contributions can be summarized as follows.

– We develop a canonical representation of character-level input perturbations,
specifically for text and covering four types of existing attack models, with
three different metrics: probability distribution, density, and diversity. Sub-
sequently, we formalize language models and their robustness specification
against character-level perturbations.

– We propose a set of perturbation generation algorithms configurable by the
three metrics. We also implement a dataset augmentation tool called PdD,
aiming to produce sufficient perturbed samples in addition to the original/real
ones in the existing datasets.

– We implement adversarial training on various typical language models using
PdD. The results demonstrate that the generated perturbed datasets are
beneficial for enhancing the robustness against specified character-level per-
turbations.
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Paper Organization. This paper is organized as follows. In Sect. 2, we provide
related works. Sect. 3 formalizes the perturbation and its metrics and robust-
ness. A formalization for language models and character-level perturbation is
given. Sect. 4 presents our experiment and evaluation using generated augmented
dataset by our algorithm. We conclude in Sect. 6.

Notation. We use lowercase letters, a, b, c, p, x, y to denote variables, and bold
lowercase letters, x, y, to denote vectors or sequences. Sets, D, P , U , Σ, are
denoted by uppercase letters. f denotes a function or model.

2 Related Work

The current work draws inspiration from existing research on adversarial attacks
and the robustness of deep neural networks, with a particular focus on NLP tasks.

2.1 Adversarial Manipulations in NLP Tasks

Adversarial attacks in the NLP domain aim to manipulate systems by altering
the input text, resulting in erroneous decision-making [9]. The perturbation of
text inputs without prior knowledge can be achieved by utilizing special char-
acter sets, such as diacritics or invisible characters, as perturbed candidates.
Boucher et al. [4] find that the injection of a single imperceptible encoding,
named bad character, can lead to a remarkable decline in the performance of
the targeted model, and when it comes to three injections, most models can be
functionally broken. Boucher et al. [3,4] also explore a pile of adversarial attacks
on NLP tasks without making any human-perceptible visual modification to
inputs, and generate perturbations by uncommon encoded representations to
control results across search engines and large language models (LLMs).

Performing an automatic search for adversarial samples around a given input
typically requires access to gradient information from the model. This process
demands additional expertise and skills, as it involves leveraging the gradient
information to iteratively modify the input and search for potential adversar-
ial examples. Behjati et al. [2] propose a gradient projection based approach
to generate data-independent adversarial sequences, which can fool the classi-
fiers into getting incorrect predictions effectively. They demonstrate that even
adding one word of the adversarial sequences into the input text can downgrade
the classification accuracy dramatically. Garg and Ramakrishnan [11] present
BAE, a black-box attack that uses BERT masked model to hide some words of
the original text with <mask> and then using BERT-MLM to predict <mask> by
insertion or replacement. The usage of BAE can not only undermine the accu-
racy of predictions but also strengthen the grammatical and semantic coherence
of the adversarial text. Morris et al. [22] propose an open-source framework
called TextAttack, which implements existing 16 adversarial attacks on vari-
ous datasets and NLP models. Song et al. [26] develop adversarial attacks that
are more like human-readable English by natural triggers and show that using
such triggers together with their proposed gradient-based search can degrade the
accuracy of classification tasks.
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2.2 Robustness of Neural Networks

Robustness typically refers to how sensitive a model is to perturbations or noise
in the input data [21,27,32]. Specifically, a model is considered robust when it
is able to maintain the stability and consistency of its outputs as the input data
have been changed. Several studies have been done to improve the robustness of
deep learning models. Gao et al. [10] propose a mutation-based fuzzing technique
to augment the training data of deep neural networks, which is capable of improv-
ing the accuracy and robustness and meanwhile, saving the training time. Zhang
et al. [36] explain adversarial robustness via the sensitivity of neurons and then
further analyze robustness by stabilizing the behaviors of the sensitive neurons.
They reduce neuron sensitivity to improve adversarial robustness successfully.
Yoo and Qi [35] propose A2T, a simple and improved vanilla adversarial train-
ing process for NLP models, that can improve the robustness of NLP models
to the attack being originally trained with. Wang et al. [29] present a CAT-
Gen model which mainly generates adversarial examples through controllable
attributes being known to be invariant to task labels, and then fine-tune and
re-train the models with adversarial examples to construct more robust NLP
models. Wu et al. [34] present methods to improve robustness of NLP mod-
els from the standpoint of disentangled representation learning and shows that
models trained with proposed criteria provide better robustness in many super-
vised learning tasks. Cheng et al. [7] address the problem of enhancing model
robustness through regularization and they find for both fully supervised and
semi-supervised settings, regularizing the posterior differential with f-divergence
can result in well-improved model robustness.

Although there are many additional approaches to perform adversarial
attacks or improve robustness [1,6,13,14,16,17,20,24,31], finding a proper rep-
resentation of adversarial perturbations when it comes to NLP tasks is still an
open question, due to its discrete features of the input data. Therefore, to the
best of our knowledge, we are the first to explore this and provide solutions
through the lens of formalization.

3 Formalization

In this section, we formulate a comprehensive framework for applying input
perturbation techniques that can be extended to natural language settings. Our
primary goal is to evaluate the robustness of natural language models within this
framework. Throughout our analysis, we introduce three fundamental character-
level operations and three metrics, namely probability distribution, density and
diversity, to effectively control the level of input perturbation. These metrics
serve as essential tools for quantifying and managing the extent of perturbation
applied to the input.

3.1 Formalizing Perturbations to General Inputs

Our initial step involves considering the neighborhood of an input, as our primary
objective is to formalize the local robustness of a model. Within this framework,



Formalizing Robustness for Neural Network Language Models 105

a perturbed input is considered to be within the neighborhood of the original
input vector, denoted as x0 ∈ X. The neighborhood, denoted as Ux0 , is a subset
of the space of all possible inputs, represented as X.

To effectively quantify the variance between the original input and its per-
turbed counterparts, we introduce three key metrics: probability distribution,
density, and diversity. These metrics serve as valuable tools for measuring and
evaluating the differences among various input samples within the neighborhood.

Probability Distribution. A discrete probability distribution is utilized to
depict the probability of perturbing each item within the input vector. This
distribution provides a representation of the likelihood associated with selecting
each item for perturbation.

Definition 1. The probability distribution P of a perturbation for a given input
vector x = (x1, x2, · · · , xn) refers to the distribution that governs the probability
P (i) of i-th element xi (1 ≤ i ≤ n) in the input vector being perturbed.

Density. The density parameter characterizes the count of perturbed items
within a given vector. It is important to emphasize that we impose a constraint
where only one element can be perturbed at a time during a single perturbation.
Consequently, a perturbation to the input may involve altering multiple distinct
elements, but each element is perturbed individually, ensuring that only one
element is modified at a time.

Definition 2. The density d (0 ≤ d ≤ 1) of perturbation refers to the percentage
of perturbed elements in the given input vector.

Diversity. The diversity of perturbation pertains to the collection of possible
candidate characters that can be employed to perturb each original element
in the input vector. This encompasses all the available choices for characters
that can replace or modify the original element. The diversity metric provides a
comprehensive view of the range of alternative characters that can be utilized for
perturbation, offering insights into the various options for altering each element
in the input vector. Notably, special character sets, such as diacritics or typos,
can be utilized as candidate sets to expand the range of perturbation options.

Definition 3. The diversity D = {(xi,Di)|1 ≤ i ≤ n} is a set of sets that
contains all pairs (xi,Di), where Di = {x′

i, x
′′
i , · · · } is the set of all possible

candidate elements that can be used to perturb xi.

Example 1: (ϵ-perturbation) When considering ϵ-perturbation, which is a com-
mon setting in verification, all elements of the input vector are available for being
perturbed, resulting in a density of 1. In this case, the distribution of perturba-
tion can be considered as any distribution. ϵ-perturbation define each input item
xi has a diversity that is a interval [xi − ϵ, xi + ϵ] containing all values within a
distance of ϵ to the input.
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Algorithm 1: PdD(x, P , d, D)
// Get the number of perturbed elements

1 n ← floor(d ∗ len(x));
2 i ← 0;
3 while i < n do

// Choose the perturbed element
4 while TRUE do
5 j ∼ P ;
6 if x[j] is not perturbed then break;

// Randomly choose a perturbed candidate
7 x′ ← getPtbCandidate(D[x[j]]);

// Perturb the specified element
8 x[j] = x′;
9 i ← i+ 1;

10 return x;

Example 2: (Character-level perturbation) When adding character-level pertur-
bation to a sentence, the sentence is represented by a character vector, and the
distribution describes the probability of each character being perturbed, while
the density describes how many characters can be perturbed. The diversity can
be a discrete character set to describe all possible replacements.

Therefore, we define the perturbation for a text input x as U(x;P, d,D).
Generating perturbations to an input is a process described in Algorithm 1.
The algorithm takes a vector x, the probability distribution P , the density d,
and the diversity parameter D as inputs and output a perturbed vector. One
element of x is perturbed in one loop until the perturbed elements achieve the
targeted density. When choosing a perturbed element, the distribution P is used.
Choosing the perturbed candidate follows a uniform distribution.

3.2 Formalizing Language Models

In this section, our attention is directed towards formulating a specific frame-
work for language models in the context of machine learning. We enumerate
three fundamental character-level operations employed in the perturbation pro-
cess. Additionally, We provide a formalized definition of robustness within this
framework.

Language Model. Let L be a formal language over an alphabet Σ, which is
a subset of the set of words Σ∗1. We begin by defining a language model in
machine learning, denoted as f .

1 We use Kleene star to denote the concatenation of words.
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Definition 4. (Language Model) A language model f is a function that takes
a sequence of words x ∈ Σ∗ as input and outputs a sequence of words y ∈ Σ∗,
where Σ∗ is its finite word set.

In practice, a language model typically uses a token-level encoding to generate
a token embedding, which is then taken as a part of the model. Due to the finite
memory of computers, a language model always has its own finite token set
Σ∗. In cases where a token is not included in Σ∗, it is represented by a special
tag/token [UNK], denoting that it is unknown. For text classification models, the
output is typically binary and can be regarded as numbers in natural language.
In this paper, to ease the understanding, we interchangeably use token and word
to represent the basic input of a language model.

Robustness. Robustness is a critical property for neural networks, as it ensures
that the network can produce accurate outputs even in the presence of pertur-
bations. The definition highlights the importance of ensuring that the output
remains within a predefined set, indicating that the network is capable of han-
dling different types of perturbations without compromising its accuracy.

Definition 5. Robustness is the property that, given a language model f and a
input x0 and its perturbed values set Ux0 , the resulting output set f(Ux0) satisfies
being a subset of the predefined set Uy0 ⊆ Σ∗, i.e.

∀x′ ∈ Uxo , y
′ = f(x′) =⇒ y′ ∈ Uy0

For a classification model, it is highly desirable that the output label for a
perturbed input remains consistent with the label for the original input, i.e.,
Uy0 = {y0}. In general cases, we aim to ensure that the output for a perturbed
input remains within a predefined set Uy0 , i.e. f(Ux0) ⊆ Uy0 . Note that it is not
necessary for Ux0 ⊆ Σ∗ when considering the model f . However, it is always
necessary for Uy0 ⊆ Σ∗ since a reasonable output under perturbed inputs is
what robustness requires and expects.

3.3 Character-Level Perturbation

We note that a sequence of words can be represented as a string or a sequence of
characters. We use [EMP] to denote an empty character. For example, a sequence
of words x = (x1, x2, · · · , xn), where xi (1 ≤ i ≤ n) is a word and xi = aibici · · · ,
which is composed of a finite set of characters ai, bi, ci, etc., concatenated to
form the word. Therefore, we consider a sequence of words in character-level as
a vector x = a1b1c1 · · · a2b2c2 · · · anbncn · · · in the following discussion. In the
following discussion, we will focus on the character representation of a sequence
of words and take it as a sequence of characters.

Definition 6. (Character-level Perturbation) Given an input x ∈ Σ∗ for a lan-
guage model L, a character-level perturbation x′ ∈ Σ̃ (Σ̃∗ ⊇ Σ∗) is another
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sequence of words, whose words have several characters that differ from the cor-
responding words in x. Let x = a1b1c1 · · · a2b2c2 · · · anbncn · · · (ai, bi, ci ∈ Σ),
and let x′ = a′

1b
′
1c

′
1 · · · a′

2b
′
2c

′
2 · · · a′

nb
′
nc

′
n · · · (a′

i, b
′
i, c

′
i ∈ Σ̃ and Σ̃ ⊇ Σ), then x′

is almost the same to x.

The perturbed words need not be elements of the original word set Σ∗.
Furthermore, certain types of perturbation may use characters outside of the
original alphabet Σ. Therefore, for a given type of perturbation, it is necessary
to have an alphabet Σ̃ ⊇ Σ and a word set Σ̃∗ ⊇ Σ∗.

In the following discussion, we explore three fundamental character-level
operations that can be utilized to generate perturbations: replacement, deletion,
and insertion. An illustrative example of generating character-level perturbations
is provided in Fig. 1.

Replacement. This operation serves as a general case encompassing all other
operations. It is inherently implied in our perturbation definition. For each ele-
ment xi in the input vector x, we define a finite discrete set of candidates Di.
The set Di comprises k candidate characters, denoted as cij , where 1 ≤ j ≤ k.
Each cij represents a possible substitution from the candidate set Di.

Other operations can be derived from the replacement operation. We illus-
trate two significant cases: deletion and insertion.

Deletion. For deletion, we set (xi,Di) = (xi, [EMP]), where [EMP] represents
an empty character. This operation effectively removes the character xi from the
input.

Insertion. For insertion, we set (xi,Di) = (xi, xicij , cijxi|1 ≤ j ≤ k, k ∈ Z),
where cij is defined as in the replacement operation. Here, xicij or cijxi rep-
resents the concatenation of the original character xi and the inserted character
cij . We limit our focus to the insertion of a single character at a time in Algo-
rithm 1 for perturbation at the character level.

It is also possible to define operations that affect subsequent characters in
different sizes. Moreover, for more complex operations such as transposition or
swapping two characters, a well-defined probability distribution of perturbation
is required. Different operations can lead to various types of perturbations. For
instance, insertion allows for the generation of diverse perturbations such as
inserting invisible characters, replacing with diacritics, or introducing typos.

4 Experiments

In this section, we assess the effectiveness of our perturbation metrics on various
language models and tasks trained with different perturbed datasets. Then we
compare the accuracy of original or augmented trained model on original or
perturbed datasets.

4.1 Experiment Setup

This section discusses the models and tasks we employed, the criteria for pertur-
bation, the procedure for creating perturbed datasets, and the training details.
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Table 1. Experimental models and datasets

Model Dataset Task #Class

BERT Rotten Tomatoes Sentiment Analysis 2

RoBERTa SNIL Natural Language Inference 3

ALBERT E-commerce Text Classification 4

Models and Tasks. We conduct our experiments on three widely used language
models, including BERT [8], RoBERTa [18], and ALBERT [15]. These models
are within the Transformer Encoder family and are usually used for classification
tasks. In this work, we focus on the classification task due to its well-defined mea-
sure of robustness, which is the accuracy of the classification. The task of BERT
is sentiment analysis, RoBERTa is for natural language inference, and ALBERT
is for text classification. Several benchmark text classification datasets, includ-
ing Rotten Tomatoes [23], Stanford Natural Language Inference (SNLI) [5], and
E-commerce [12], are used to evaluate the performance of the models. Table 1
displays the models and datasets evaluated in this study.

Perturbation Settings. To create augmented datasets comprising perturbed
samples, we employ our formalized perturbation metrics including proba-
bility distribution, density, and diversity to define the perturbed input set
U(x0;P, d,D) for each input sample x0 by combinations of different metrics. In
accordance with the definition presented in Sect. 3, the perturbations employed
in our experiments are practically elaborated as follows.

– On probability distribution, we consider two probability distributions, namely
the uniform distribution and the normal distribution, to deploy character-
level perturbations in original input samples. Specifically for normal distribu-
tion, we select µ = 0.5×L and σ2 = 0.25×L, where L represents the length
of the input sequence.

– On density, we investigate the densities of 0.05 and 0.2, which signify a small
and large number of perturbations of two levels.

– On diversity, we opt the specific perturbation generation method, encom-
passing deletion, keyboard typos, diacritics, invisible characters as follows,
and mixed perturbation.
• Deletion refers to replacing a character from the given sentence with the
empty character.

• Keyboard typos imitate the act of mistakenly pressing adjacent keys,
whereby we consider up to 8 neighboring keys as potential candidates for
a single key.

• Diacritics, by definition, are characters that bear a resemblance to a
specific character. In our approach, we carefully select 5 diacritics that
can serve as potential replacements for a single character in the input
sentence.
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• Invisible characters encompass operational characters that are not
detectable by human eyes, and we choose from a pool of 48 invisible
characters to insert them behind the selected character.

Fig. 2. Examples of four practical attacks in English text

Figure 2 demonstrates some perturbation instances generated by the four
standalone attack methods. In addition to the four standalone methods, amixed
perturbations method is also adopted to further assess the effectiveness of the
proposed adversarial training approach. It combines the aforementioned four
types of perturbation and randomly applies them to the input sequence.

Table 2. Perturbation settings used in our evaluation

Metrics Description Setting Options

P Probability Distribution uniform distribution, normal distribution

d Density 0.05, 0.2

D Diversity deletion, keyboard typos, diacritics, invisible characters

Augmented Datasets Generation. For each input sample, we generate 10
perturbed versions using a single perturbation setting. Consequently, an aug-
mented dataset produced using one perturbation setting is 10 times larger than
the original dataset. Using different combinations of these metrics as outlined
in Table 2, we separately apply each character-level perturbation method to all
samples in a dataset. We then utilize all the resulting perturbed samples to
evaluate the accuracy of the language models.

Implementation Details. In our experiments, we utilize three different pre-
trained large language model architectures and train them on both original train-
ing datasets and augmented training datasets. This training process results in
two separate models for each model architecture, namely a clean model Mclean,
and an augmentedly trained model Maug.
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To maintain consistency, we randomly choose an equivalent amount of data
from the SNLI and E-commerce datasets, which are larger in size compared to
the Rotten Tomatoes dataset. This selection results in 9,000 training samples
and 2,000 testing samples for the original datasets. For each augmented dataset
under different settings, we obtain 99,000 training samples and 22,000 testing
samples, after the insertion of perturbed samples.

During the training phase, all models utilize a batch size of 16. We employ the
AdamW optimizer [19] with a fixed learning rate of 2× 10−5. To determine the
best models, we incorporate early stopping with a patience of five. On average,
the training process spans approximately seven epochs. All reported experiments
are conducted on a workstation equipped with an AMD Ryzen Threadripper
PRO 5965WX 24-Core 4.00GHz CPU, 252G of main memory, and one NVIDIA
RTX A6000 GPU.

4.2 Evaluation

In this section, we evaluate the effectiveness of making the model more robust
by using robustness training with different specified perturbations. We measure
the accuracy of the models on the original datasets and the perturbed datasets
to demonstrate the effectiveness of robustness for the specified perturbations.

Overall Performance. Table 3 reveals that the accuracy of the original models
is lower on perturbed datasets than augmented models. This indicates that all
the various perturbation types have a clear negative effect on the performance
of the models when trained normally. For the models trained with perturbed
datasets, their accuracy is significantly higher (up to 0.4) than those trained
without perturbated samples.

The results in Table 4 demonstrate that the augmented models have a com-
parable or even better accuracy (ranging from −0.05 to 0.005) than the original
models on the original datasets. This suggests that the augmented models are
able to maintain their performance on regular samples while still being tolerant
to perturbed samples.

This demonstrates the detrimental effect of character-level perturbation on
models that have been trained in the usual way, and highlights the need and
effectiveness for robustness training using perturbed samples.

Performance on Different Models and Tasks. We assess three cases, (1)
BERT with sentiment analysis, (2) RoBERTa with natural language inference,
and (3) ALBERT with text classification. For the accuracy on pertubed datasets
in Table 3, cases (1) and (2) are more vulnerable to perturbed samples, with
a decrease in accuracy ranging from 0.01–0.26 and 0.08–0.43, respectively. In
contrast, case (3) is less affected, with a decrease ranging from 0.01–0.14.

For the accuracy on original datasets in Table 4, the augmented models show
a similar accuracy (with a maximum difference of 0.01) for cases (1) and (3),
but a noticeable decrease (up to 0.06) for case (2).
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Table 3. Model performance (F1-scores) on augmented datasets, presented as tuples of
the clean models (Mclean) and augmentedly trained models (Maug). The improvement
of model performance is displayed in bold font.

Deletion Perturbation

Probability Distribution Density BERT(SA) RoBERTa(NLI) ALBERT(TC)

Mclean Maug Mclean Maug Mclean Maug

Uniform 0.2 0.5044 0.7499 0.4060 0.6769 0.8045 0.9443

0.05 0.7873 0.8358 0.7133 0.8027 0.9491 0.9566

Normal 0.2 0.5498 0.7505 0.4426 0.6788 0.8751 0.9466

0.05 0.7901 0.8329 0.7241 0.8074 0.9533 0.9612

Keyboard Typos Perturbation

Probability Distribution Density BERT(SA) RoBERTa(NLI) ALBERT(TC)

Mclean Maug Mclean Maug Mclean Maug

Uniform 0.2 0.4963 0.7651 0.3625 0.6918 0.8095 0.9436

0.05 0.7911 0.8463 0.7161 0.8028 0.9470 0.9613

Normal 0.2 0.5529 0.7691 0.3891 0.6877 0.8819 0.9491

0.05 0.7966 0.8471 0.7214 0.8058 0.9515 0.9627

Diacritics Perturbation

Probability Distribution Density BERT(SA) RoBERTa(NLI) ALBERT(TC)

Mclean Maug Mclean Maug Mclean Maug

Uniform 0.2 0.7588 0.8247 0.2879 0.7142 0.9407 0.9560

0.05 0.8404 0.8547 0.6799 0.8213 0.9588 0.9642

Normal 0.2 0.7727 0.8259 0.2978 0.7061 0.9485 0.9588

0.05 0.8466 0.8519 0.6883 0.8184 0.9600 0.9637

Invisible Characters Perturbation

Probability Distribution Density BERT(SA) RoBERTa(NLI) ALBERT(TC)

Mclean Maug Mclean Maug Mclean Maug

Uniform 0.2 0.5336 0.7712 0.3630 0.6925 0.8380 0.9434

0.05 0.7978 0.8411 0.7099 0.7999 0.9501 0.9618

Normal 0.2 0.5812 0.7740 0.3995 0.6821 0.8885 0.9527

0.05 0.8051 0.8442 0.7176 0.8063 0.9542 0.9612

Mixed Perturbation

Probability Distribution Density BERT(SA) RoBERTa(NLI) ALBERT(TC)

Mclean Maug Mclean Maug Mclean Maug

Uniform 0.2 0.5534 0.7630 0.3370 0.6750 0.8636 0.9477

0.05 0.8080 0.8416 0.7001 0.8035 0.9526 0.9613

Normal 0.2 0.6013 0.7667 0.3634 0.6742 0.9051 0.9529

0.05 0.8128 0.8387 0.7097 0.8101 0.9563 0.9594
SA: Sentiment Analysis NLI: Natural Language Inference TC: Text Classification

Our perturbation has a more significant effect on the natural language infer-
ence (NLI) task than the other two tasks. This is because NLI requires a thor-
ough analysis of each word and phrase in a sentence to create a detailed context,
which is one of the most difficult areas of NLP. On the other hand, text classi-
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Table 4. Model performance (F1-scores) on original datasets, presented as tuples of
the clean models (Mclean) and augmentedly trained models (Maug). The improvement
of model performance is displayed in bold font.

Deletion Perturbation

Probability Distribution Density BERT(SA) RoBERTa(NLI) ALBERT(TC)

Mclean Maug Mclean Maug Mclean Maug

Uniform 0.2 0.8625 0.8611 0.8686 0.8283 0.9636 0.9599

0.05 0.8611 0.8419 0.9620

Normal 0.2 0.8424 0.8394 0.9609

0.05 0.8574 0.8571 0.9644

Keyboard Typos Perturbation

Probability Distribution Density BERT(SA) RoBERTa(NLI) ALBERT(TC)

Mclean Maug Mclean Maug Mclean Maug

Uniform 0.2 0.8625 0.8672 0.8686 0.8149 0.9636 0.9624

0.05 0.8653 0.8516 0.9630

Normal 0.2 0.8621 0.8277 0.9624

0.05 0.8672 0.8543 0.9657

Diacritics Perturbation

Probability Distribution Density BERT(SA) RoBERTa(NLI) ALBERT(TC)

Mclean Maug Mclean Maug Mclean Maug

Uniform 0.2 0.8625 0.8638 0.8686 0.8299 0.9636 0.9599

0.05 0.8639 0.8568 0.9669

Normal 0.2 0.8601 0.8170 0.9639

0.05 0.8602 0.8571 0.9648

Invisible Characters Perturbation

Probability Distribution Density BERT(SA) RoBERTa(NLI) ALBERT(TC)

Mclean Maug Mclean Maug Mclean Maug

Uniform 0.2 0.8625 0.8681 0.8686 0.8554 0.9636 0.9624

0.05 0.8658 0.8391 0.9644

Normal 0.2 0.8630 0.8393 0.9646

0.05 0.8634 0.8450 0.9634

Mixed Perturbation

Probability Distribution Density BERT(SA) RoBERTa(NLI) ALBERT(TC)

Mclean Maug Mclean Maug Mclean Maug

Uniform 0.2 0.8625 0.8564 0.8686 0.8134 0.9636 0.9627

0.05 0.8600 0.8488 0.9637

Normal 0.2 0.8508 0.8510 0.9655

0.05 0.8615 0.8593 0.9595
SA: Sentiment Analysis NLI: Natural Language Inference TC: Text Classification

fication models usually only consider a few keywords to determine the category
of the review, resulting in a less noticeable impact. Despite the presence of per-
turbed characters, the model still manages to achieve a satisfactory result on
text classification.
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Performance on Different Perturbation Settings. Perturbations with a
uniform distribution always lead to a greater decrease in accuracy (as much as
0.08) of the original models than perturbations with a normal distribution. The
uniform perturbation has a greater impact on all the words of the sentence, while
the normal distribution is more likely to affect words in certain positions with
higher probability. . The results of augmented models demonstrate that they
are able to learn the data with perturbation, regardless of the two distribution
settings, with little to no impact on their accuracy.

When perturbations with a higher density of 0.2 are applied, the accuracy
of the original models decreases by a range of 0.07 to 0.39, while the augmented
models experience a decrease of 0.01 to 0.14. It is logical to assume that the more
perturbed elements there are, the more challenging it is to make an inference.

Different types of character-level perturbations demonstrate varying levels of
vulnerability for the original models. In case (1), the original models are more
resilient to diacritics perturbations (with an accuracy of approximately 0.75–
0.85) than to other perturbations (with an accuracy of approximately 0.5–0.8).
In the second case, all types of perturbations have a similar effect on the accuracy
of the original models. In the third case, the original models are more resistant
to diacritics perturbations (with an accuracy of approximately 0.95) and less
resistant to other perturbations (with an accuracy of approximately 0.8–0.95).
The augmented models show a similar pattern when exposed to different types
of perturbations, but with a higher and more stable accuracy. Moreover, the
accuracy of the augmented models is not significantly affected by the various
types of perturbations when tested on the original datasets. In current natural
language models, the words are tokenized and converted into numerical vectors.
These perturbed characters often lead to the replacement of [UNK] token. Those
perturbation, causing another correct existing words, has a greater impact on
the inference of models.

It is evident that models and tasks with regular training can be affected
to varying degrees when exposed to different perturbations. Our three metrics
show different impacts on the performance of the original models, indicating that
these metrics do indeed measure the perturbation. If robustness training is used
to target a particular perturbation, the robustness of the original models can be
significantly improved.

5 Discussion

This study focuses on the formalization of perturbation at the natural language
level, treating it as a character sequence. Our work contributes a novel endeavor
by establishing a unified definition encompassing all types of inputs for neural
networks. However, to comprehensively evaluate the robustness of these mod-
els, it is imperative to develop additional metrics that effectively capture the
distance or dissimilarity between the original item and its perturbed counter-
part. Such metrics are essential for quantifying the diversity and construction
of the candidate set. Although our study provides an initial framework, further
refinement is expected in this aspect.
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Our experiment results demonstrate that our approach can not only signif-
icantly enhance the robustness, but also retain a high level of fidelity of the
models. However, we only experiment with models of classification tasks. The
robustness of models of generative tasks such as Machine Translation and Text
Summarization can be further investigated.

We also remark that the robustness of neural network language models can
be extended to the word level. Defining metrics of word-level robustness presents
unique challenges as it entails considerations of semantic meaning and grammar
and therefore, desires future efforts from the research community.

6 Conclusion

This paper introduces a generalized formalization of perturbed inputs for natu-
ral language models, offering a crucial step towards testing and verifying their
robustness. We specifically focus on character-level perturbations, outlining the
basic operations of replacement, deletion, and insertion. By controlling the per-
turbation process through principles of probability distribution, density, and
diversity, we can generate different levels and types of character-level perturba-
tions using a clean dataset.

Our approach demonstrates significant improvements in robustness against
specific perturbations when training a network on a dataset perturbed by our
method compared to using only clean data. Augmenting existing text datasets
with adversarial perturbations, guided by our proposed approach, leads to
notable enhancements in overall model robustness.

Overall, this work contributes novel insights and techniques, advancing the
measurement and assurance of language model robustness. Given the critical
importance of reliability and accuracy in language models, our approach holds
great potential for further advancements in this area.
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