
Analyzing Use of High Privileges on Android:
An Empirical Case Study of Screenshot and

Screen Recording Applications ?

Mark H. Meng1, Guangdong Bai2, Joseph K. Liu3, Xiapu Luo4, and Yu Wang5

1 Institute for Infocomm Research,
Agency for Science, Technology and Research (A*STAR), Singapore

2 Griffith University, Australia
3 Monash University, Australia

4 Hong Kong Polytechnic University, Hong Kong S.A.R.
5 Guangzhou University, China

menghs@i2r.a-star.edu.sg, g.bai@griffith.edu.au, joseph.liu@monash.edu,

csxluo@comp.polyu.edu.hk, yuwang@gzhu.edu.cn

Abstract. The number of Android smartphone and tablet users has
experienced a rapid growth in the past few years and it raises users’
awareness on privacy and security issues of their mobile devices. There
are lots of users rooting their Android devices for some useful functions,
which are not originally provided to developers and users, such as taking
screenshot and screen recording. However, after observing the danger of
rooting devices, the developers begin to look for non-root alternatives to
implement those functions. Android Debug Bridge (ADB) workaround
is one of the best known non-root alternatives to help app gain a higher
privilege on Android. It used to be considered as a secure practice until
some cases of ADB privilege leakage have been found. In this paper,
we propose an approach to identify the potential privilege leakage in
Android apps that using ADB workaround. We apply our approach to
analyze three real-world apps that are downloaded from Google Play
Store. We then present a general methodology to conduct exploitation
on those apps using ADB workaround. Based on our study, we suggest
some mitigation techniques to help developers create their apps that
not only satisfy users’ needs but also protect users’ privacy from similar
attacks in future.

Keywords: Android security · application analysis · privilege escalation
· ADB workaround · exploit.

1 Introduction

The rise of mobile devices has greatly enriched people’s lives in this digital era.
As the dominator of current mobile device market, Android has reserved over
77.3% of the global smartphone market share by July of 2018 [20].

? This work was supported by NSFC Project 61802080.

2 M. H. Meng et al.

At the moment of this paper being drafted, the global number of monthly
active Android devices has exceeded 2 billion [16]. The over-reliance on mobile
devices makes people save all the data regardless of personal or business purpose
onto their smartphones or tablets, which may lead their privacy under exposure
if no proper protection has been enforced.

Android is well-known by its rich functionality and customization, but there
are still some features that could not be implemented merely using the offi-
cial application programming interfaces (APIs). Google creates a collection of
permission labels to define the privilege of apps running on Android operating
system (OS). Some actions like reading the content displaying on the screen, in
another word taking screenshot and screen recording, are marked as signature
level permissions, hence are not allowed to be realized by common third party
apps. However, as long as the requirement of users exists, the developers would
never stop to push the boundary. For that reason, developers are all motivated
and successfully come up with two approaches to solve the permission dilemma,
namely “rooting the phone” and “ADB workaround”.

Rooting the devices could enable users to gain the administration privileges
to do anything they want such as removing pre-installed apps, unlocking more
functionalities, or changing the theme of UI. According to a statistic done by
Kristijan [14], there are over 27.44% users indicating that they have rooted their
smartphones to remove redundant and useless pre-installed applications. There
are several security issues behind the “rooting” because it circumvents the per-
mission mechanism on Android system. The good news says there is an increasing
number of people who have realized the risk of rooting their devices, and have
started seeking non-root approaches. Gaining a higher privilege through Android
Debug Bridge (ADB) is one of the best known and widely used workarounds.
Users can connect their devices to a PC via either USB or wireless network,
launch the ADB and then invoke a service with system level privilege running
in the background. After that, an application could communicate with that ser-
vice, send command to it, and thereby trigger it to work for the application with
system privilege. In this manner, that app can do the job even without APIs pro-
vided by Android. There are plenty of apps on Google Play Store adopting this
ADB workaround to satisfy users’ specific needs, including, but not be limited
to, performing backup and restoration, taking screenshot, recording screen, etc.
Those apps that use ADB workaround to achieve high privilege are very popular
in recent years while Google has not yet granted corresponding permissions to
developers.

The security concern of ADB workaround has been raised up after some ex-
ploitation being successfully conducted. In this work, we design an approach to
discover the vulnerabilities of ADB workaround. We apply this approach to three
real-world apps downloaded from Google Play Store, analyze them and eventu-
ally identify the potential privilege leakage on each of three apps. In addition, we
conduct an exploitation on one of these three apps named “No Root Screenshot
It” and successfully prove the existence of vulnerabilities that we have recently
found. Based on the outcome of our exploitation, we find that all the apps found

Analyzing Use of High Privileges on Android 3

by us that uses ADB workaround to achieve privilege escalation are vulnerable
to the attack through the socket channel. Once the attacker finds a way to in-
stall the malicious application on the target device, the user privacy stored on
the device will be in great risk of being stolen or leaked. Last but not the least,
we provide some advices to the developers to mitigate security risk and thereby
achieve users’ requirement and meanwhile protect users’ data and privacy.

Therefore, this paper marks the following contributions:

• We discuss the potential vulnerability of ADB workaround usage on Android
devices by conducting our empirical case study.

• We propose a general approach to perform exploitation to any application
using ADB workaround to achieve privilege escalation.

• We carry out our exploitation on a real application downloaded from Google
Play Store and we prove that the ADB workaround brings with a significant
security loophole.

• We emphasize that the security consideration during the application design
and implementation is crucial to the preservation of users’ privacy and hence
we provide our mitigating suggestions to the developer community.

This paper is organized as follows. In the next section, we briefly introduce
the security mechanism of Android, the concept of ADB workaround and related
works. In Section 3, we present the dataset we have collected and then we ex-
plain our approach to conduct case study. We also summarize a methodology to
perform exploitation and we test our exploit app on actual Android devices in
that section. Section 4 is made up of our investigation based on 3 experiments
of Android applications. We also present our corresponding observation in each
experiment. Moreover, we provide our suggested mitigation in Section 5. Finally,
we wrap up this paper in Section 6 with our concluding remarks.

2 Background

2.1 Privilege & Permission on Android

Privilege is a security attribute required for certain operations. In Unix-like OS,
the process privileges are assigned in the principle of file system ownership. Its
privilege mechanism is organized in shape of a flat tree where users’ privilege is
presented as the leaves and the superuser is described as the root [17]. Android,
as a mobile operating system built based on Unix, takes advantages of the user-
based privilege mechanism to identify, isolate and protect the resources used by
applications. Every app is assigned with a unique user identification (UID), runs
within the application sandbox where it only has limited permissions to access
resources from the OS or other apps [4].

From the perspective of application, Android adopts the concept of ownership-
based permission system from the underlying Linux kernel and develops its own
access control mechanism, which is also known as the discretionary access control
(DAC) [5]. On Android platform, permissions are classified into several protec-
tion levels. Most of the Android developers are made available to the normal
level permissions and the dangerous level permissions in their development. The

4 M. H. Meng et al.

normal level permissions, such as Internet, vibration, NFC or setting alarm, are
considered as having no great risk to the user’s privacy or security. It will not
prompt users for consent if the usage of those permissions is properly declared
in manifest during the development. The dangerous level permissions indicate
that the application needs access to private data or control over the device that
may potentially have a negative impact to user. Unlike the normal level, all
the operations classified in dangerous level will not be executed until obtain-
ing user consent. In addition to aforementioned two permission levels, there are
two more protection levels namely signature level and signature or system level
defining risky permissions. The former is only granted to the application signed
by the same encryption key with the one it declared the permission in advance.
Furthermore, some signature level permissions are not made available for third
party developers and they can only be granted to a trusted party like Android
development group, as Table 1 shows. The latter could only be granted to the
apps that are embedded in Android system image or signed by vendors of the
system image [8]. The grant of these two permission levels is not to be approved
by users, instead, it is conducted by signature validation mechanism of Android
system during installation [19]. Many functions that users require but not pro-
vided as public APIs by Android OS, like backing up, taking screenshot and
screen recording, belong to the signature level permission.

It is noteworthy that the DAC is only effective with the premise that all the
apps are executed by an unprivileged user. Similar to other Unix-like operating
systems, Android also has a number of privileged users defined in its Linux kernel,
such as root, system, and radio. The root, for instance, is the most supreme user
in Android and has full access to all apps’ data. The Android OS does not
prevent the root user or any app executed with root privilege from accessing
and even modifying the resources of system or other apps [9].

2.2 Privilege Escalation

In order to implement the functions like backup, taking screenshot or screen
recording, developers have to find a way to escalate the privilege of their apps till
the signature level or even higher. There are two privilege escalation approaches
on Android, namely rooting and non-root workarounds.

Rooting
Rooting is the process of allowing users of Android devices to attain privileged
control. Once an Android device is rooted, users can take advantage of the
root privilege and arbitrarily access the system resource. Furthermore, users can
assign specific privilege to any app installed on the rooted devices, and thereby
enjoy massive personalized functionality to maximize the usage of their Android
devices [3]. Due to those benefits, there are plenty of users rooting their Android
devices even Google officially discourage to do so [6,12].

Android rooting is described as a double-edged sword in the paper of [22]. It
offers users with more permission and freedom to use their devices, and mean-
while, it also exposes all the data and program to the adversary and bring severe
security vulnerabilities [18,15].

Analyzing Use of High Privileges on Android 5

Table 1: Some examples of signature level permissions that are not granted to
the third party developers by API level 19

Permission API Level Description

BROADCAST SMS 2 Broadcast an SMS receipt notification
CALL PRIVILEGED 1 Initiate a call without user confirmation
CAPTURE AUDIO OUTPUT 19 Capture audio output stream
CAPTURE VIDEO OUTPUT 19 Capture video output stream
DELETE PACKAGE 1 Uninstall package
DIAGNOSTIC 1 Read and write the diagnostic resources
DUMP 1 Retrieve state dump from system services
INSTALL PACKAGES 1 Install packages
MODIFY PHONE STATE 1 Modify phone state (e.g. power on, mmi, etc)
MOUNT UNMOUNT FILESYSTEMS 1 Mount/unmount file systems or removable storage
READ FRAME BUFFER 1 Access to the frame buffer data (e.g. screenshot)
READ LOGS 1 Read system log files
REBOOT 1 Reboot the system
SET TIME 8 Set system time
WRITE APN SETTINGS 1 Overwrite APN setting

Non-root Alternative
Rooting an Android device is a risky practice because it may void the warranty,
brick the device and bring with numerous security vulnerabilities. Not all An-
droid users are willing to root their device for the exchange of additional freedom
and customization. Therefore, developers start to seek non-root alternatives to
escalate privilege. There is an alternative approach called ADB workaround to
attain high level privilege without rooting the device, and it becomes popular
whilst the growth of users’ concern to their device security.

Take the programmatic screenshot as an example. An app needs to have a sig-
nature level permission from the system to take screenshot, which is impossible
for normal developers to obtain through normal level permission request in user
interface. However, there are still two workarounds even without the permission
given from Android development team: (1) taking screenshot on rooted devices;
or (2) making use of a process with higher privilege to indirectly escalate the
privilege of the app. The latter approach does not require the holistic change to
the Android devices like “rooting”. In another word, it has better security and
reliability [13].

ADB is a development tool provided by Google to allow developers to debug
their apps through shell commands from their PCs. A process requiring signature
level permissions, such as taking screenshot, is not allowed to be implemented
in app by third party developers, but could be started from an ADB shell win-
dow. That is the reason why ADB workaround could achieve a higher privilege.
By using ADB workaround, developers could implement all methods requiring
signature level permissions, pack all of them into an executive binary that could
be started on ADB and run them in the background of Android OS as a service.

6 M. H. Meng et al.

As long as the service is not killed (e.g. power-off, restart), the unprivileged app
could communicate with the privileged proxy to achieve the functionality which
are not able to be done solely by itself.

2.3 Access the Screen Display on Android Devices

It is a very common demand for users to take a screenshot to save and share what
is happening on her mobile device. Android only officially provides screenshot
function to users and developers since its version 4.0. The most common way for
user to capture the screen content is pressing a key combination of power key
and volume down key. However, in those earlier versions before 4.0, Android OS
neither offers users a function to take screenshot, nor provides public APIs to
developer to produce third party apps to do so [10]. For those reasons, there is
only one way to enable user taking screenshot on their Android device, which is
privilege escalating.

Android system uses Linux OS as its kernel, and therefore it shares same
approach to take screenshot with traditional Linux OS. In Linux system, the
display output stream is managed by a software library named “framebuffer”.
By accessing the framebuffer library, an application or a process can obtain the
display data of whole screen. In early history of Android system until 3.0, reading
data from the framebuffer is the only approach to take screenshot. The frame-
buffer approach is concise and traditional but faces some challenges. First of all,
the Linux applies very strict access control to the framebuffer library, which is
borrowed by Android OS as well. There are only 2 user groups, root and graphic,
being able to access data from the framebuffer on Android platform. Moreover,
nowadays Android apps become complex and sometimes using multiple frame-
buffers to form an overlaid display. Reading framebuffer is very likely no longer
capable to obtain the entire screen display.

Starting from version 4.0. Google introduces an interface specially for taking
screenshot called SurfaceFliger, together with a permission called READ FRAME -

BUFFER to invoke that interface. Nonetheless, Android remains its strict access
control policy to the new API. Only the apps running with system or graphics
user group are eligible to use such API to take screenshot – which is impossible
for normal third party apps to achieve.

The developer community can always find a solution although there are num-
ber of restrictions to achieve screenshot. “ddms” is the most popular approach
which adopts the idea of ADB workaround to eliminate the privilege restriction
of screenshot taking within a third party app. ddms refers to the Dalvik Debug
Monitor Server, which is a debugging tool brought with Android SDK and is
also integrated into the official Android development software called Android
Studio. By accessing the ddms, user can make use of a third party process to
send commands to the framebuffer service through the ADB channel. Unlike
the third party app itself, an ADB session is given the shell user permission, at
which all processes launched in an active ADB session are eligible to be assigned
with privileges of graphic user group. Hence the ddms approach could achieve
the screenshot functionality without needs to gain a higher privilege [7].

Analyzing Use of High Privileges on Android 7

2.4 Related Work

There are some previous studies unveiling the security risk of ADB workaround
despite it is considered much safer than device rooting. Security concern of ADB
workaround mainly comes from the difference between roles of proxy and appli-
cation on Android OS. In this project, these risks could be summarized into two
types:

(1) whether other apps could obtain control to the opening proxy by sending
commands; and

(2) whether the communication between app and proxy is properly protected
if the scenario of (1) is possible to happen.

The description of the first kind of security concern could be found in the
paper written by Lin, et al. [13]. The communication channel between the ap-
plication and its ADB proxy relies on network sockets without any protection
enforced. For that reason, once an ADB proxy has been activated, any applica-
tion has the privilege to communicate with it and even request service from it
at any time without restrictions. This vulnerability gives attackers a chance to
analyze the protocol of such communication and build a malicious application
to request service from ADB proxy exactly as same as what genuine application
does.

Some developers have realized the fact that the communication channel be-
tween the application and ADB proxy may be risky, and therefore implemented
some authentication routines to strengthen security. However in the paper of
Bai, et al, it was proved that such authentication was ineffective as long as
the reverse engineering and analysis being feasible on given application. What
developer can do to secure the communication is only applying some basic au-
thentication since there is no way to enforce strong protection onto the socket
network. That authentication is usually very weak in front of analysis [1]. Some
application like “Helium”, a backup/restore application mentioned in the paper
written by Bai, et al., has been found using protection during the communication
between application and ADB proxy. ADB proxy requests a password that sent
out from a specific process to provide service. Unfortunately, vulnerability was
found in the protocol of password distribution. The password generated each
time when ADB proxy being activated, and it is independent of app’s life cycle.
In this way, the proxy has to find a place that readable by apps executed with
user group privilege, save the password into a file and waiting for app to read
from it. This life cycle inconsistency makes adversary possible to find the current
using password and thereby exploit the Android device by carrying out a replay
attack to the ADB proxy.

3 Approach

The Android app using ADB workaround is usually a combination of a normal
application with restricted permissions, and a proxy started by ADB which has
signature level permissions. In Android, most of apps communicate with proxies
through the socket channel, which has no strong protection and generic access
control. A malicious app could easily obtain the control of proxy if it knows

8 M. H. Meng et al.

the protocol of communication between app and itself. The security concern
arises if the proxy interface is not well protected against the third party access.
Some apps implement password authentication into the protocol to strengthen
protection to the proxy. However, due to the inconsistency of app and proxy’s
life cycles, there usually be a mechanism to temporarily save the password. By
this means, a malicious app could still have chance to obtain the password if
proper analysis has been done. Therefore, an ineffective or insecure mechanism
of password authentication constitutes another potential security concern.

In this work, we raise our hypothesis that all the apps using ADB workaround
to attain a higher privilege are vulnerable to the attack. To prove that hypothesis,
we collect a number of Android apps from Google Play Store. By filtering out
those apps that do not adopt ADB workaround, we conduct a series of analysis
in 3.2 to find out their mechanisms to achieve privilege escalation. Static analysis
is the first step of application assessment, which will be conducted on both the
proxy activation program running on the PC and the app itself. Static analysis
helps us locate the involved classes for the proxy communication and thereby gain
the knowledge of the overall procedure. Dynamic analysis, on the other hand,
is capable of elaborating the runtime behavior of the target app and exposing
the potential error and vulnerability. Dynamic analysis, such as hooking, is a
good complement of the static analysis for our app assessment especially in case
of strong obfuscation has been enforced. The protocol between the proxy and
the app is supposed to be completely discovered after the static analysis and
dynamic analysis. For the purpose to conduct exploitation and thereby prove
our hypothesis, we may also need to conduct authentication analysis to bypass
the limited security mechanism applied in the target app. With all the key
information gathered, we shall proceed to exploitation design, which will be
introduced in 3.3.

3.1 Data Set

We collect a batch of 13 screenshot apps and 2 screen recording apps from
Google Play Store, with the criteria that the app must be compatible with earlier
Android versions that do not have official support of screenshot functions. We
install those apps on a Nexus 7 device installed with Android 4.4, followed by
reading their official user instructions and observing the functionality of each of
them. Those 15 apps, as shown in Table 2, covers all well-known approaches to
take screenshots or screen recording on Android devices. There are 4 apps using
ADB workaround approach to enable users to take screenshots or recording
without needs to root their devices in advance. 6 other screenshot apps achieve
screenshot by asking user to press key combination (e.g. power key and volume
down key). Those apps essentially do not contain screenshot implementation,
instead they detect the device configuration and then display the screenshot
instruction if either the corresponding manufacture has official built-in function,
or the Android system version installed is 4.0 or later [11], to help users to
achieve screenshot functionality – in another word, those 6 apps are more like
an assistant to guide users to take and manage screenshot pictures. Moreover,
there are 5 more apps explicitly declaring that they are not working on devices

Analyzing Use of High Privileges on Android 9

Table 2: List of screenshot and screen recording apps found on Google Play Store

App Name & Identity Package Name
Root

Required
App

Type1
Unrooted
Approach

Size

1
Screen Capture - Sigourney
com.mobilescreen.capture

No S Hardkey 5.2M

2
Screenshot Easy
com.icecoldapps.screenshoteasy

No S Hardkey 5.2M

3
Screenshot Ultimate
com.icecoldapps.screenshotultimate

No S ADB 3.2M

4
Screenshot Capture
com.tools.screenshot

No S Hardkey 3.1M

5
NoRoot Screenshot Lite
com.mobikasa.screenshot.lite

Yes S N.A.2 545k

6
Screenshot and Draw
com.conditiondelta.screenshotanddraw.trial

Yes S N.A. 1.1M

7
Screenshot
com.enlightment.screenshot

No S Hardkey 2.4M

8
Screenshot
com.geekslab.screenshot

No S Hardkey 1.2M

9
Screenshot
com.icondice.screenshot

No S Hardkey3 4.86M

10
Screenshot
com.geeksoft.screenshot

Yes S N.A. 2.3M

11
Screenshot ER Demo
fahrbot.apps.screen.demo

Yes S N.A. 3.2M

12
No Root Screenshot It
com.edwardkim.android.screenshotitfullnoroot

No S ADB 838k

13
Screenshot It
com.edwardkim.android.screenshotitfull

Yes S N.A. 840k

14
FREE screen recorder NO ROOT
uk.org.invisibility.recordablefree

No R ADB 7.5M

15
Mobizen Screen Recorder – Record, Capture,
Edit 3.1.0 com.rsupport.mvagent

No R ADB 19.9M

1 ‘S’ stands for screenshot app and ‘R’ stands for screen recording apps.
2 N.A.indicates that application only work on rooted devices.
3 Only compatible with devices made by some fixed manufactures.

without being rooted. In this paper, we only focus our study on those apps that
using ADB workaround.

3.2 Application Assessment

Executing the application on an Android device by following the user instruc-
tion is obviously not sufficient for the purpose of application assessment. A com-

10 M. H. Meng et al.

Analysis approaches

Dynamic analysis

Hooking method
invocation

Runtime logs
analysis

Static analysis

Decompilation

Disassembly
inspection

smali/Java code
analysis

Script analysis

Fig. 1: Approach of app analysis

plete application assessment is composed of static analysis and dynamic analysis.
Fig. 1 illustrates some common approaches to conduct application assessment on
Android platform. The static analysis is to find a rough picture of the function-
ality of an Android application by analyzing source code, binary or other sup-
porting materials such as the manifest file. While the dynamic analysis makes
use of the findings from static analysis, and consequently unveils the runtime
behavior of the target application [2]. In this work, our approach to analyze the
app and find the vulnerabilities of ADB workaround is initiated based on two
potential concerns that we have mentioned above. We summarized our approach
into four step:

(1) Analysis on the proxy activation. This analysis could be done on
reading proxy activation script if exists. The script is usually a batch file or bash
script, which depends on the OS environment, i.e. the Windows or Linux, to
be run with. Some apps do not provide script file to the user for Windows OS,
for instead, a desktop application with graphic user interface (GUI) is provided
to achieve better user experience. In this circumstance, the Linux version of
activation package is recommended to be download because the script file is more
widely used on Linux OS. A script file could disclose some details of the protocol
of communication between app and proxy, such as the name of service proxy,
the native executive file of proxy if any, and how the service being activated.
Besides the analysis onto the script file, the name, process ID and permission
group of service proxy running in the background could also be found by typing
command “adb shell ps” in ADB through USB to the device. Moreover, the
port opened for the communication between service proxy and app could be
found in similar way by typing ADB command “adb shell netstat” to retrieve
all active network usage on the device. However, in this step, the pairing of
process and specific port listening may not be able to be observed if multiple
proxies had been activated.

(2) Analysis on the apk file. Reverse engineering, such as apk decompila-
tion, is involved in this step. Once the service proxy and port number have been
identified, the next step is to discover the implementation of the communication
between proxy and app in apk file. The apk file could be unpackaged and then
decompiled into smali/Java source code by using tools like Apktool or dex2jar.
The smali/Java code has supreme readability which may help us to look through
different classes to locate the code of protocol’s implementation. In fact, the de-
compilation analysis may not always to be proved as a smooth and easy process

Analyzing Use of High Privileges on Android 11

because a large amount of developers obfuscate their code before releasing the
apk files to the app store [21]. There are a number of Android obfuscation tools
available on the Internet that facilitate developers to obfuscate their apps to
preserve copyright and intellectual property [23]. In this situation, the disassem-
bly will be helpful and a supplement to the smali/Java code reading. Reading
assembly code could help us recognize the constant strings and numbers defined
within same class.

(3) Dynamic analysis. Only reading the script and source code may not
be sufficient to sketch out the entire protocol between proxy and app. The ob-
jective of dynamic analysis is to find both control flow and data flow occurred
when the app interacts with service proxy. Reading logs through logcat is a
simple but effective way to gain a brief understanding to the protocol. However,
hooking by Xposed framework will be one of the best solutions to complete the
analysis when the source code has been enforced with strict obfuscation or an
authentication has been applied onto the socket channel between app and proxy
server. Hooking method could be enforced onto the key methods in the class that
takes responsibility to the communication between app and proxy, then sniff and
extract the arguments passed in and return value through the system logs. Ac-
cording to the case studies in this work, the methods to be hooked are mostly
used to handle the action trigger (e.g. takeScreenshot) and socket channel I/O
(e.g. write). Hooking on the prior method(s) by printing logs could show us the
control flow of the protocol, and hooking on the latter method(s) by extract-
ing arguments’ value could help us understand the data flow between service
proxy and app itself. By now with both control flow and data flow confirmed,
the communication protocol has been unveiled.

(4) Authentication analysis. There is very likely an authentication process
if any series of numbers or a random string to be found in the data flow of the
protocol. In that case, it is encouraged to clarify if the password is a constant
string or dynamically generated. For the dynamically generated password, the
password issuing should be solely performed by either the proxy or the app itself.
The password is generally stored at somewhere that both the app and proxy have
permission to read.

Once these four steps listed above have been fully understood and conducted,
attackers are theoretically able to exploit an app that uses ADB workaround in
a programmatic manner. We will perform an empirical case study of 3 apps that
uses ADB workaround and we will present our findings in next section.

3.3 Exploitation

Theoretically, the user privacy displayed on device could be unperceivably com-
promised at arbitrary time if there is a malicious app installed on that device
where the proxy of original app running in the background. In this subsection,
we present our methodology to conduct the exploitation. Furthermore, we also
select one of those 3 apps that are mentioned in the case study as the target to
carry out a real exploitation, and we depict the implementation details as well
as the exploitation outcome.

12 M. H. Meng et al.

Android Device

shell group
user group

PC

Proxy

Attacker

1

2

3

A2

A3

4

A4

App Installation

ADB Channel

Socket Channel

IO Control

Normal Actions

Attack Actions

Legend

A1

Fig. 2: Process to conduct ADB workaround exploitation

Based on our analysis on the apps collected for this work, we find all the
apps that uses ADB workaround are vulnerable by attacking through socket
channel and thereby obtain screenshot or screen recording of victim’s device.
Moreover, we find there is a large group of Android apps using socket channel
communication aided by ADB workaround to achieve privilege escalation. For
those reasons, we summarize the exploitation methodology into a set of technical
processes and we extend our focus scope to all apps that use ADB workaround
to achieve privileged functionality.

As shown in Fig. 2, the exploitation is achieved by replay attack initiated by
a malicious app, which follows the same protocol as the original app but without
compliance with users’ control over their devices. It could carry out theft of user’s
privacy at any time as long as the proxy is running in the background. Generally
a successful exploitation is constituted by 4 key steps, which are:

(A1) the attacker finds a way to install the exploitation app on the victim’s
device, where the benign app has also been installed on.

(A2) the malicious app identifies the proxy and then conduct a replay attack;

(A3) the malicious app gains access to the specific file directory where the
output media files locate; and

(A4) the malicious app finds a way to transmit the stolen data to the attacker.

In this paper, we introduce our exploitation conducted to the app II and then
we present the outcome of exploitation.

We implemented an app named “exploitNoRootScreenshotIt” simulating the
malicious exploitation of the app named “No Root Screenshot It” (app II in
following case study) for the demonstration purpose.6. In that exploitation app,
there are in total 4 messages being organized into 2 batches and sent out to
the localhost on port 6003 through the socket channel. The first 2 messages

6 The source code of our exploitation could be downloaded from http://mark-h-
meng.github.io/attachments/analysing-use-of-high-privileges/source code folder.zip

Analyzing Use of High Privileges on Android 13

are used for the configuration purpose. Once the acknowledgment of first batch
messages has been received from the proxy, which is “screenshotService” run-
ning in the background, the last 2 messages are sent out as screenshot taking
commands.

The screenshot obtained is converted to a bmp file under the sub-directory
named “temp”7. The access permission of that folder was set as read-only to
the user group. Therefore, once the screenshot has been taken by the proxy, the
exploitation app could access to the newly captured screenshot located in the
“temp” folder and make a copy to the target location such as folder under exter-
nal storage “/sdcard/hack screenshots/”. The screenshot image is renamed
according to the capture time to avoid being overwritten and facilitate main-
tenance at the same time. As the result, our exploit app has been successfully
tested on 2 devices in our lab (a Nexus 7 with Android 4.4 installed, and a
Xiaomi Rednote 3G with Android 4.2 installed). This exploitation could even
been further designed and programmed to take screenshot automatically with
specific frequency without any notice of user, hence the user’s privacy could be
consequently exposed to the attacker.

4 Empirical Case Study

In this section, we perform our case studies on 3 apps that use ADB workaround
to achieve screenshot function. Firstly, we analysis the app titled as Screenshot
Ultimate developed by “icecoldapps” and we note it as app I. Then we study
the app named No Root Screenshot It developed by “edwardkim”, which is rep-
resented by app II. After that, we conduct our analysis on the third app called
FREE screen recorder NO ROOT, which is produced by “Invisibility Ltd” and
noted as app III.

4.1 App I – Screenshot Ultimate.

“Screenshot Ultimate” is a typical screenshot app that does not require a rooted
device. It supports screenshot taking through ADB workaround. However, that
usage is veiled since too obvious instruction may lead to a ban from Google. The
ADB workaround is mentioned in a paragraph of “Help” instruction, and the
URL to download the script and other necessary files are given in another place
and could only be found on the screen display within the app. The developer
has provided detailed step-by-step instruction and troubleshooting notes.

Analysis on the proxy activation

The native executable file, named “screenshotultimatenative1”, and scri-
pts for both Linux and Windows OS could be downloaded as a zipped file from
the URL given in the help instruction. After reading through the script file, we
found the execution of script pushed that native executable to the file directory of
the application in the device, then configured another native executable named
absel located in the application file directory to user executable mode, and

7 The full directory path is /data/data/com.edwardkim.android.screenshotitfullnoro
ot/temp

14 M. H. Meng et al.

Start

Connect PC & device through ADB

Push screenshotultimatenative1
to the app folder on device

Change mode absel which locates

in app folder on device

Kill both processes if they are running in

background

Start both processes

End

Fig. 3: Proxy activation of app I Fig. 4: Process of taking screenshot on app I

finally launched both native execution files to make them run in the background.
We summarize the flow of service activation and show it in Fig. 3. With the
process name of service running in the background, we can analyze the apk
file and unveil the protocol of screenshot taking process between app and that
service.

Analysis on the apk file

The reverse engineering tool “dex2jar” is used to decompile the apk file to
the jar format. Then further Java decompilation has been done by “JD-GUI”.
Unfortunately, the class organization of the source code obtained from the de-
compilation of “Screenshot Ultimate” is not quite readable because the obfusca-
tion is believed to be applied. Some core methods which control the logic flow of
screenshot taking are missing. Clues could only be found by analyzing package
structure, libraries imported and source code from the remaining classes.

Obfuscation cannot perfectly hide everything in the decompiled source code.
After carefully reading through the source code of “Screenshot Ultimate”, we find
some clues to shape the mechanism of screenshot taking. For example, there is
an address in Android OS partition, which is in form of a string variable with the
value as “/system/bin/fbread”, appearing more than once in the obfuscated
classes. Its occurrence suggests that this app is very likely taking screenshot
by reading image data from framebuffer, which is commonly expressed as short
writing “fb” in Android development. Reading framebuffer to take screenshot
is usually achieved by a library called Android screenshot library (known as
“ASL”)8. We downloaded the ASL from Android open source repository and
compared the checksum value with the native executive that we downloaded
from the URL given by the app developer. The comparison result reveals that 2
executive files are exactly equivalent, which proves our hypothesis that the app
I makes use of ASL to read framebuffer and thereby capture the screen display.

The ASL enables Android developer to write screenshot app without root
requirement. Once the user follows the instruction and executed the native exec-
utive file by running the given scripts, proxy with shell permission could help user

8 Android screenshot library is available at https://code.google.com/archive/p/

android-screenshot-library/downloads

https://code.google.com/archive/p/android-screenshot-library/downloads
https://code.google.com/archive/p/android-screenshot-library/downloads

Analyzing Use of High Privileges on Android 15

take screenshot which the application has no privilege to do so. Take “Screen-
shot Ultimate” as example, user could just click the “Screenshot” button at the
moment that user wants to take screenshot of his/her device, then the app send
the screenshot command to the proxy running in background via socket chan-
nel, following by the proxy as a process named “screenshotultimatenative1”
reading the current hardware framebuffer, converting to the image format and
saving to the specific location. Furthermore, we find the command that the app
I sends to the background service through socket channel. The message is a con-
stant string with a value as “SCREEN”. The communication is carried out by a
plaintext messaging mechanism through a fixed port number, which is obviously
not secure at all. In the end, we sketch out the protocol of communication be-
tween app and proxy and place it into a bigger scale of the entire life cycle of
the app I. We present the process diagram of app I in Fig. 4.

4.2 App II – “No Root Screentshot It”

Unlike the “Screenshot Ultimate”, the app II “No Root Screenshot It” has ad-
ditional security feature and protection enforcement being implemented during
the development. The obfuscation has been conducted onto both service activa-
tor and apk file. Meanwhile, the communication channel between app and proxy
has also been protected by using some identification trick like a password.

Analysis on the proxy activation

Instead of simply running a batch script, the service activation of app II
is performed by executing a .Net application named “Screenshot It Enabler”.
Therefore the decompilation of .Net application is involved in the static analysis
of app II. Moreover, the script file was not found in the enabler’s package, which
means it has been packaged into the apk and the purpose of the enabler is just
to run the “shell” command to execute it. A .Net decompilation tool named
“JetBrains dotPeek”9 has been used to conduct the reverse engineering of the
activation tool. Even though the enabler application has been obfuscated, some
variables and C# code logics could still be recovered after the decompilation.
The scripts to enable the proxy has been unveiled by observing the C# code from
the decompilation result. We noticed there is a string “screenshot” that occurs
in the decompiled C# code as one of the argument while launching ADB service.
For that reason, we believe that there is a script file named “screenshot” being
executed during the service activation. Then the script file’s location could be
easily found by browsing the file manager on a rooted phone, or by decompiling
the apk file and searching the file name.

Analysis on the apk file

After clarifying the ADB communication to activate the proxy, the follow-
ing step focuses on discovering the communication between app and the proxy,
thereby obtain the commands to control proxy to take screenshot at any oc-
casion. On the apk side, the obfuscation has been applied very strongly onto
both class names and variable names, which makes it difficult to observe the

9 dotPeek is available on https://www.jetbrains.com/decompiler/

16 M. H. Meng et al.

Start

Connect PC & device through ADB

Kill screenshot process if it is

running in background

Start screenshot which locates

in app folder on device

End

Fig. 5: Proxy activation of app II Fig. 6: Process of taking screenshot on app II

entire protocol by just reading the decompiled Java code. It is cleared that the
class named ScreenshotService is in charge of the communication with the
proxy but the code is not as readable as the app I. What worse is that there is
magic number, 89234820, being found and referenced multiple times by reading
through the assembly code of ScreenshotService class. There is a great possi-
bility that the app has (1) multiple communication session with proxy to take
a screenshot; and/or (2) an authentication trick to indicate the app’s identity,
which might be the reason of the existence of the magic number 89234820.

Dynamic analysis

Unlike what we have done in case study of app I, only static analysis is not
adequate to find the protocol that used for communication between the app II
“No Root Screentshot It” and its proxy. In order to unveil what kind of command
that the app sends to the proxy to take screenshot and how they interact with
each other, a dynamic analysis technique called “hooking” is adopted in this
project. Hooking system APIs on Android could be enabled by using a framework
known as Xposed on a rooted device. By reading the decompiled code during the
static analysis, the communication between the proxy and app has been found
carry out through the socket channel. Therefore, the monitoring of the socket
channel during the communication between the proxy and app could be done by
writing a module based on Xposed framework which hooks all the socket channel
related packet data IO functions in specific source codes.

After implementing and deploying our Xposed module named “hookNoRoot-
ScreenshotIt”, all the necessary data has been logged and printed out during
the IO operation of the socket channel. The control flow of the app and proxy
communication is finally unveiled and shown in Fig. 6.

4.3 App III – “FREE screen recorder NO ROOT”

In addition to those 2 screenshot apps, a screen recording app “FREE screen
recorder NO ROOT” has also been investigated in this paper. According to the
description on Google Play Store, this app could enable users to record their
screen regardless of which app or activity is on the top of stack, and then export
the recorded video in MP4 format. The entire process doesn’t request users to
root their devices.

Analyzing Use of High Privileges on Android 17

Analysis on the proxy activation

Similar with those two screenshot apps we have analyzed previously, this app
also needs user to complete the proxy activation before the app unlocking the
record function. The activation process is launched by an exe file on Windows
OS, and an executable jar file on Linux OS. Missing of activation script doesn’t
mean the identification of proxy is impossible. Actually, with the help of ADB,
we could still find the details proxy(s) activated, including the process name,
PID and the port(s) listening. Here, two ADB commands, “ps” and “netstat”,
have been used to retrieve the list of running processes and active ports on the
Android device. By this means the proxy and the ports number could be found.
There are two services namely “videoserv” and “inputserv” running on the
background to enable users to record their screen. One of them uses port 7938,
and the other one uses port 7940 to communicate with app. However, we are
still yet to completely discover the protocol without knowing the identification
of the process which actively engages with those two ports. For that reason, the
decompilation is needed for the further analysis.

Analysis on the apk file

Firstly, the apk file has been extracted out of the device, and then been de-
compiled into smali code. The clues that recently found, two port numbers 7938
and 7940, could be searched within the source code to locate the key classes we
will analyze on. As the searching result of keyword 7938 shown below, we found
the variable name which bearing that port number, namely “video port”. Sim-
ilarly, the port 7940 has been found in variable name “input port” recorded
in same xml file. Next, we continued searching the occurrence of two variables
“video port” and “audio port”. After filtering from the search result, we pre-
liminarily confirmed that the code reflecting the control flow and data flow was
located in class “RecordService” and “Projection” separately. Take the com-
munication between video server and app as example, the core function in charge
of the communication flow is supposed to be “videoWrite”, which located in line
1038 in the smali code of RecordService. This videoWrite method has been
called many time once after the occurrence of the constant string with all letter
being capitalized, which is suspected to be the command sending to the server.
Moreover, by browsing through the smali code, a method named “openSocket”
has been called within the class RecordService, which helps us to confirm that
the protocol we are going to discover is performed through the socket channel.

Dynamic Analysis & authentication analysis

Similar with the analysis of app II, we used hooking to sketch out the com-
plete control flow and data flow of the protocol. The target function to be hooked
has been confirmed during the previous analysis, which is “videoWrite” located
in class named “RecordService”. In order to find as many details about the pro-
tocol as possible, some other methods located in the same class of “videoWrite”
have also been hooked. With the information obtained from the output logs
of methods’ hooking, the protocol of the communication between video server
and app to start screen recording has been found. A sixteen-digit-long string

18 M. H. Meng et al.

LIST OF MESSAGES

Fig. 7: The sequence diagram of screen video recording on app III

ce2757a06d455af2 grabbed our attentions because it was presumed to be the
authentication code, or password for short, according to the location of its oc-
currence. Nevertheless, it has not yet been confirmed to be a string constant or
a dynamic changing string so far. In order to clarify the nature of that password,
a series of experiments has been conducted.

Firstly, we closed the app after taking a screen recording video clips, then
re-opened it and took another screen recording. Hooking logs shown in logcat
console showed that the password didn’t change. In that means, the password
is independent of the app’s life-cycle. We have repeated the above steps for
many times and all the results proved that our assumption is correct. Next, we
killed all proxies related to this app and launch the service activation again. As
a result, we noticed that the password has changed. Thus the password could
be confirmed to be dynamically generated after each time that the proxy being
re-activated. Since the password is proved to be generated by proxy, there must
be a place that the proxy stored the code at somewhere that the app with user
privilege could access and read. After searching, we finally located the password
in a log file named videoserv.log under the directory data/local/tmp, and
luckily find the first occurrence of the current password was always after the
word “AUTH” in the log file. With those information, An attacker could all along
hold the current password by writing a simple program on the target device to
read the log file and then extract the string at given location.

5 Mitigation

In order to find a solution to the concerns we raised in Section 2.4, we summa-
rize some suggestions for the Android development throughout the study and
research in this project. The Android developers are strongly advised to raise
security awareness and take some security practices into account when imple-
menting the functionality based on ADB workaround, including:

Analyzing Use of High Privileges on Android 19

1. Identity verification for the application. One possible solution for this
issue may be writing a handshake process in the proxy implementation, to
make both the app and the proxy exchange their authentication. And the
ADB proxy will execute the command only after a successful validation. Thus
the proxy service can only accept the command sent from the exactly same
app. Once the app is removed and re-installed, regardless of genuine app or
malicious app, another handshake validation should be required thereby to
ensure the ADB proxy would not be misused.

2. Password protection for socket channel communication. Another
possible solution is to implement a stronger password mechanism. For the
purpose to prevent from the replay attack, the password could be dynami-
cally generated at first and then updated after a specific time period. Besides
that, an out-of-bounds password mechanism could be another option as the
password is randomly generated and issued by the activation program. To
synchronize the password between the proxy and the app, the activation pro-
gram can display its password on the PC screen and ask user to manually
type in the benign app. Thus no other application could attain the password
and thereby leaves no chance to attackers to carry out exploitation.

6 Conclusion

In this paper, we analyze the approach to find privacy loophole and security
vulnerabilities of ADB workaround on Android platform. By conducting inves-
tigation on 3 different apps, we find that most of apps using ADB workaround
have risk of being exploited. We propose a methodology to conduct exploita-
tion to all similar apps that use ADB workaround through the socket channel.
We also implement an exploit application on Android, which successfully proves
our findings and verifies our proposed methodology. In the end, we provide our
recommendation to app developers to mitigate security risks and produce their
apps with higher privacy-preserving capability.

References

1. Bai, G., Sun, J., Wu, J., Ye, Q., Li, L., Dong, J.S., Guo, S.: All Your Sessions are
Belong to us: Investigating Authenticator Leakage through Backup Channels on
Android. In: Proceedings of the 20th International Conference on Engineering of
Complex Computer Systems (ICECCS) (2015)

2. Batyuk, L., Herpich, M., Camtepe, S.A., Raddatz, K., Schmidt, A., Albayrak,
S.: Using static analysis for automatic assessment and mitigation of unwanted
and malicious activities within android applications. In: 2011 6th International
Conference on Malicious and Unwanted Software. pp. 66–72 (Oct 2011)

3. Bishop, M.: Unix security: threats and solutions (1996)
4. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.R., Shastry, B.: To-

wards taming privilege-escalation attacks on android. In: NDSS. vol. 17, p. 19.
Citeseer (2012)

5. Chen, H., Li, N., Enck, W., Aafer, Y., Zhang, X.: Analysis of seandroid policies:
Combining mac and dac in android. In: Proceedings of the 33rd Annual Computer
Security Applications Conference. pp. 553–565. ACM (2017)

20 M. H. Meng et al.

6. Chris, H.: The case against root: Why android devices don’t come
rooted (2012), https://www.howtogeek.com/132115/the-case-against-root-

why-android-devices-dont-come-rooted/

7. Ferrill, P.: Navigating the android sdk. In: Pro Android Python with SL4A, pp.
57–82. Springer (2011)

8. Google: <permission>, Android Developers (2018), http://developer.android.
com/guide/topics/manifest/permission-element.html, online; Accessed: 2016-
03-18

9. Google: System and kernel security (2018), https://source.android.com/

security/overview/kernel-security.html, online; Accessed: 2016-03-18
10. Gordon, W.: How To Take A Screenshot On Android (April 2013), https://www.

lifehacker.com.au/2013/04/how-to-take-a-screenshot-on-android/, online;
Accessed: 2018-07-12

11. Hoffman, C.: How-To Geek: How to Take Screenshots on Android De-
vices Since 4.0 (June 2012), http://www.howtogeek.com/121133/how-to-take-

screenshots-on-android-devices-since-4.0, online; Accessed: 2016-03-20
12. Kristijan, L.: Over 27.44% Users Root Their Phone(s) In Order To Remove Built-

In Apps, Are You One Of Them? (2014), https://www.androidheadlines.com/
2014/11/50-users-root-phones-order-remove-built-apps-one.html

13. Lin, C.C., Li, H., Zhou, X.y., Wang, X.: Screenmilker: How to Milk Your Android
Screen for Secrets. In: NDSS (2014)

14. Lucic, K.: Over 27.44% Users Root Their Phone(s) In Order To Remove Built-In
Apps, Are You One Of Them? (November 2014), http://www.androidheadlines.
com/2014/11/50-users-root-phones-order-remove-built-apps-one.html, on-
line; Accessed: 2016-03-14

15. Meng, H., Thing, V.L.L., Cheng, Y., Dai, Z., Zhang, L.: A survey of android
exploits in the wild. Computers & Security 76, 71–91 (2018)

16. Popper, B.: Google announces over 2 billion monthly active devices on Android
(2017), https://www.theverge.com/2017/5/17/15654454/android-reaches-2-

billion-monthly-active-users, online; Accessed: 2018-07-01
17. Provos, N., Friedl, M., Honeyman, P.: Preventing Privilege Escalation. In: USENIX

Security. vol. 3 (2003)
18. Ravenscraft, E.: Rooted vs. Unrooted Android: Your Best Arguments (July 2014),

http://lifehacker.com/rooted-vs-unrooted-android-your-best-arguments-

1599101019, online; Accessed: 2016-03-18
19. Shabtai, A., Fledel, Y., Kanonov, U., Elovici, Y., Dolev, S., Glezer, C.: Google

android: A comprehensive security assessment. IEEE Security & Privacy 8(2), 35–
44 (2010)

20. StatCounter: Mobile Operating System Market Share Worldwide (2018), http:

//gs.statcounter.com/os-market-share/mobile/worldwide, online; Accessed:
2018-08-14

21. Wang, Y., Rountev, A.: Who changed you?: obfuscator identification for android.
In: Proceedings of the 4th International Conference on Mobile Software Engineer-
ing and Systems. pp. 154–164. IEEE Press (2017)

22. Zhang, H., She, D., Qian, Z.: Android root and its providers: A double-edged
sword. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. pp. 1093–1104. ACM (2015)

23. Zhang, L., Meng, H., Thing, V.L.L.: Progressive control flow obfuscation for an-
droid applications. Region 10 Conference, TENCON 2018 IEEE (2018)

https://www.howtogeek.com/132115/the-case-against-root-why-android-devices-dont-come-rooted/
https://www.howtogeek.com/132115/the-case-against-root-why-android-devices-dont-come-rooted/
http://developer.android.com/guide/topics/manifest/permission-element.html
http://developer.android.com/guide/topics/manifest/permission-element.html
https://source.android.com/security/overview/kernel-security.html
https://source.android.com/security/overview/kernel-security.html
https://www.lifehacker.com.au/2013/04/how-to-take-a-screenshot-on-android/
https://www.lifehacker.com.au/2013/04/how-to-take-a-screenshot-on-android/
http://www.howtogeek.com/121133/how-to-take-screenshots-on-android-devices-since-4.0
http://www.howtogeek.com/121133/how-to-take-screenshots-on-android-devices-since-4.0
https://www.androidheadlines.com/2014/11/50-users-root-phones-order-remove-built-apps-one.html
https://www.androidheadlines.com/2014/11/50-users-root-phones-order-remove-built-apps-one.html
http://www.androidheadlines.com/2014/11/50-users-root-phones-order-remove-built-apps-one.html
http://www.androidheadlines.com/2014/11/50-users-root-phones-order-remove-built-apps-one.html
https://www.theverge.com/2017/5/17/15654454/android-reaches-2-billion-monthly-active-users
https://www.theverge.com/2017/5/17/15654454/android-reaches-2-billion-monthly-active-users
http://lifehacker.com/rooted-vs-unrooted-android-your-best-arguments-1599101019
http://lifehacker.com/rooted-vs-unrooted-android-your-best-arguments-1599101019
http://gs.statcounter.com/os-market-share/mobile/worldwide
http://gs.statcounter.com/os-market-share/mobile/worldwide

	Analyzing Use of High Privileges on Android: An Empirical Case Study of Screenshot and Screen Recording Applications

