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Abstract. Federated learning enables multiple data owners with a com-
mon objective to participate in a machine learning task without sharing
their raw data. At each round, clients train local models with their own
data and then upload the model parameters to update the global model.
This multi-agent form of machine learning has been shown prone to adver-
sarial manipulation by recent studies. Byzantine attackers impersonated
as benign clients can stealthily interrupt or destroy the learning process.
In this paper, we propose FLAP, a post-aggregation model pruning tech-
nique to enhance the Byzantine robustness of federated learning by effec-
tively disabling the malicious and dormant components in the learned
neural network models. Our technique is data-agnostic, without requir-
ing clients to submit their dataset or training output, well aligned with
the data locality of federated learning. FLAP is performed by the server
right after the aggregation, which renders it compatible with an arbitrary
aggregation algorithm and existing defensive techniques. Our empirical
study demonstrates the effectiveness of FLAP under various settings. It
reduces the error rate by up to 10.2% against the state-of-the-art adversar-
ial models. Moreover, FLAP also manages to increase the average accu-
racy by up to 22.1% against different adversarial settings, mitigating the
adversarial impacts while preserving learning fidelity.

1 Introduction

Federated learning (FL) is a machine learning (ML) technique that collabora-
tively trains a model from decentralized datasets [14]. Unlike the traditional ML
that trains a model using a centralized dataset, FL adopts a distributed paradigm
where multiple clients contribute to training a model from their local data. Due
to the heterogeneity of the data owned by different parties, FL exhibits the great
capacity of mitigating the fairness issue from data bias. On the other hand, FL
reverses the stereotype that ML can only be carried out in a computationally
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intensive setting. Through the cluster effect [6], FL enables mobile and edge
devices to participate in solving complex real-world problems, such as financial
services [13], cybersecurity [25], healthcare [19,28], and knowledge discovery [21].

FL is designed to preserve participants’ privacy and locality of their data [10,
14,29]. This process, however, is prone to be manipulated by malicious clients
since their data and training processes are not transparent to the server and
other participants. In addition, the Byzantine failure is a major threat to FL due
to its distributed nature. There is no guarantee that every client has faithfully
uploaded the trained model to the server. Many attacks exploiting these issues
have been discovered by a recent study [5]. For example, poisoning is one of
the most studied attack methods [1]. Malicious clients can collude with each
other and commit a Byzantine attack by intentionally training on adversarial
data [4] or directly uploading erroneous model parameters to the server [2,27].
Unfortunately, such distributed poisoning attack is hard to be detected. Notably,
an existing study [2] shows that a poisoning attack can be achieved by merely
one malicious client launching a one-shot attack in FL.

To tackle the potential attacks, the research community has proposed mul-
tiple defense techniques. Most endeavors pursue Byzantine-robust FL through
Byzantine-resilient aggregations. It is usually achieved by diverse aggregation
algorithms, such as multi-Krum [2] and trimmed mean [27], to detect and elim-
inate the malicious impact on the global model. Unfortunately, as shown by a
recent study [5], these Byzantine-resilient aggregations are only effective when
the attacker has no extra knowledge about the FL than benign clients. The FL
can still be compromised in case the attacker knows information such as the
defensive aggregation technique adopted by the server. As a result, some aux-
iliary defense approaches that cooperate with aggregation algorithms are pro-
posed to address their fragility. They are essentially not a part of the conventional
FL process but demonstrate promising efforts towards Byzantine robustness.

Recent advances in auxiliary defenses tend to enhance the robustness of the
global model prior to the aggregation. Representative studies include taking
advantage of a dedicated dataset to exclude certain clients’ updates incurring
abnormal test accuracy and/or loss values [3,5] and performing a supervised
model pruning based on clients’ voting [26]. They either require a dataset from
a similar distribution of clients’ training data, demand the population of attack-
ers among participating clients, or assume participating clients are honest all the
time. However, these prerequisites may not be realistic, especially in an adver-
sarial environment. An effective defense technique is needed to strengthen the
Byzantine robustness of FL.

In this paper, we propose a post-aggregation defense technique for FL by
data-agnostic model pruning named FLAP (FL by data-Agnostic Pruning)1.
FLAP can be performed by the server independently with no reliance on training
data and extra contributions from clients. It is not limited by the estimated
population of malicious clients. More importantly, FLAP is designed with a
generic FL framework that is compatible with diverse aggregation settings. It can

1 Our source code is hosted at https://github.com/mark-h-meng/flap.

https://github.com/mark-h-meng/flap
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be deployed either alone or together with existing Byzantine-robust techniques
to boost their defenses.

Our design is motivated by an insight that model pruning could disable the
insignificant and dormant parameters, which are often introduced by poison-
ing attacks. FLAP aims to enhance the robustness of the global model in an
adversarial environment. Meanwhile, it should preserve learning fidelity to the
maximum extent. Therefore, we adopt a conservative pruning strategy rather
than the cut-and-re-train approach that has been conventionally applied by cen-
tralized learning paradigms. More specifically, our pruning aims to remove the
parameters with the most negligible impact on the model’s output. To this end,
FLAP dynamically measures the effect of deleting a unit to identify pruning
candidates. It adopts a scale-based sampling strategy for convolutional (Conv)
layers and a cross-layer saliency-based sampling strategy for fully-connected (FC)
layers. Our evaluation shows that FLAP is effective in preserving robustness and
fidelity against diverse adversarial settings. Meanwhile, it is capable of boost-
ing the state-of-the-art (SOTA) defenses towards a higher degree of Byzantine
robustness. Our key contributions are summarized below.

– We propose FLAP, a novel FL pruning technique that does not rely on
an estimation of malicious clients’ population and makes no request for the
cooperation of participating clients. It is implemented as an auxiliary defense
for generic FL that can be added to any form of existing FL applications.

– We conduct an empirical study to explore the effectiveness of FLAP in an
adversarial environment. We find FLAP can enhance the robustness of FL
with different aggregation algorithms while preserving the model fidelity.

– We test FLAP against different advanced adversarial models and compare
it with the SOTA defenses. Our empirical study shows that FLAP outper-
forms the existing defense techniques in all adversarial models and boosts the
existing defenses for a higher degree of Byzantine robustness.

2 Related Work

Attacking FL. Poisoning attacks for ML can be categorized into untargeted
attacks [5] and targeted attacks [4,16]. The former is performed to reduce the
overall learning accuracy on arbitrary inputs, and the latter aims to precisely
misclassify a limited set of classes. An untargeted attack is shown not practical
to the extent of FL, as it can be defended at a low cost [20]. Targeted attacks
can be further classified into label-flipping attacks [9] and backdoor attacks [4]. In
this paper, we select the targeted label-flipping attacks as the default approach.

Byzantine-Robust FL. Defending FL systems is a widely-studied topic. The
dominant baseline defenses include median [27], trimmed mean [27], multi-Krum
[2], and Bulyan [8]. Among them, median and trimmed mean are statistical-
based aggregations that assess each client’s update independently. multi-Krum
and Bulyan are representative distance-based aggregations. Those baseline algo-
rithms are later found to be fragile to fine-crafted adversarial models [5].
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Recent improvements that address the flaws of baseline defenses mainly focus
on proactively detecting malicious clients prior to the aggregation [3,26] and
strengthening the existing FL framework to minimize the impact of malicious
upload [11,17]. Besides that, there are also auxiliary defenses that co-exist with
these baselines and address their shortcomings. The SOTA defenses include the
Error Rate based Rejection (ERR), the Loss Function based Rejection (LFR) and
the Union Rejection (ERR+LFR) [5]. They are shown effective against various
adversarial models but demand a proper estimation of malicious clients’ popu-
lation. Cao et al. [3] proposed another Byzantine-robust FL framework by trust
bootstrapping. However, it may require the cooperation of the clients because
the server needs to collect a small clean dataset from their training data.

Neural Network Pruning in FL. Pruning is a commonly applied model
optimization technique [7]. It is considered useful in FL based on an insight that
the defense against targeted attack can be achieved by removing not only the
poisoned data but also the activation of adversarial inputs in the model [12,24].
Wu et al. [26] proposed a post-training FL defense by pruning and fine-tuning the
global model. However, it relies on a voting process among participating clients,
which entails sharing their local models’ activation results. That may not be
practical because participants may be reluctant to share any knowledge about
the models’ output based on their own training data, given that disclosing them
is prone to a membership attack [18]. In this paper, we study the adoption of
pruning that does not rely on the training data, i.e., data-agnostic pruning [15,
22], and therefore can be solely performed by the server without explicitly asking
for clients’ cooperation.

3 Problem Statement

3.1 Federated Learning

We assume a standard context of FL, in which data is not identically and inde-
pendently distributed across multiple clients. A client i can only access his/her
own data Di, i = 1, 2, ..., n. The server does not have access to clients’ data. The
learning process is performed in multiple rounds in a synchronous manner.

During an arbitrary round t, clients receive a global model wt−1
Global from the

server and perform continuous learning with his/her own data Di, followed by
sending the update of the local model’s parameters, i.e., gt

i = wt
i − wt−1

Global, to
the server. All the clients’ updates would then undergo an aggregation procedure
by the server prior to moving to the next round. Let α be the learning rate, the
global model can be defined as follows:

wt
Global = wt−1

Global + α · gt
Global (1)

The ultimate goal of FL is to find an aggregated update gt
Global from the

clients at a certain round t to result in a minimal loss function L (D,wt
Global) on

the joint training dataset D = ∪n
i=1Di.
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We assume a standard aggregation named FedAvg [14] as the default option
to compute the global update unless otherwise specified. FedAvg calculates the
average of the clients’ updates as the global update, which can be formally
defined as gt

Global =
∑n

i=1
|Di|
|D| gt

i , where |D| and |Di| represent the size of the
joint training dataset and the size of the client i’s local training set. In addition
to FedAvg, we also consider the server to take some defensive measures to thrive
for a resilient and safe global model, which we will detail in Sect. 5.

3.2 Threat Model

This paper assumes that the attack of FL adopts a targeted label-flipping attack
by model poisoning, which is to maximize the possibility of misclassification of
the targeted data samples. The malicious clients are granted no extra privileges
than the benign ones, such that they can only access their own training sets and
model parameters. However, they can still be manipulated by a single attacker to
deploy a Byzantine attack. In other words, malicious clients will collude with each
other toward the same attack goal. During an attack round, the malicious clients
intentionally learn certain (victim) data 〈xv

i , yv
i 〉 ∈ Di with a wrong (target) label

yτ
i , e.g., learning all digit 1 as digit 7, and learn the remaining data correctly.

Apart from the conventional attack, we also consider that malicious clients
can take advantage of the strengthened adversarial models to craft local mod-
els [5]. Thus, we anticipate the malicious clients to apply two additional strength-
ened adversarial models. We brief them below and later assess them in Sect. 5.

Partial knowledge attack. A malicious client can access all other colluding
malicious clients’ local models and has knowledge about the aggregation rule on
the server side. Through analyzing the parameters of other malicious clients, it
can craft the local update to influence the direction of the global model update,
which subsequently undermines the robustness of the global model.

Full knowledge attack. On the basis of a partial knowledge attack, a mali-
cious client has full access to the training sets and local models of all participating
clients, i.e., the entire FL is completely transparent to the attacker. This sce-
nario is helpful for us to assess the upper bound of an attacker’s capability and
estimate the impact of adversarial manipulation.

4 Proposed FLAP

4.1 Approach Overview

Figure 1 shows how FLAP is used in FL. Overall, it is a typical FL process except
for the addition of the post-aggregation model pruning at the server side (Phase
4). FL with FLAP executes an iterative process that begins with broadcasting
the global model (Phase 1). For each client, it performs training over the received
global model with its own data set (Phase 2). This training process is supposed
to be private so that other clients and the server have no access to it. Upon
the completion of training, the client sends the learned local model parameters’
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Aggregation

 Clients learn from
their own datasets

 The server aggregates
clients' updates

 The server prunes
the global model

FLAP Pruning

 The server broadcasts
the global model for the

next round of FL

Fig. 1. The workflow of federated learning with FLAP

updates to the server. Once the server has received all participating clients’
updates, it aggregates the parameters and produces the global model (Phase 3).
Next, FLAP performs model pruning over the newly generated global model
(Phase 4) and marks the end of the current round of learning. If the learning is
not concluded, the server will broadcast the newly pruned global model to all
participating clients and start the next round of learning.

4.2 Model Pruning

Our data-agnostic pruning supports two types of hidden layers of neural network
models: the FC layers and the Conv layers. For each time the pruning is launched,
FLAP samples the units on the supported hidden layer and nominates a fixed
proportion (e.g., 1%) of units to cut. Unlike the conventional data-hungry prun-
ing that adopts an aggressive cut-and-re-train strategy, we design our pruning as
a conservative approach that always prefers to remove the units that incur the
most insignificant impact to the model output, based on an insight that many
attack models stealthily plant their adversarial patterns in those units [12,24].
Although we are given a chance of continuing training in FL, applying a proper
conservative pruning technique is helpful in preserving model fidelity. To this
end, we propose different sampling strategies for the two layer types to nomi-
nate pruning candidates.

Conv Layers Sampling. When handing a Conv layer, FLAP calculates the
l1-norm of all the filters, sorts them, and nominates a few filters with the least
norm values as pruning candidates. The norm function is selected as the pruning
criteria based on the assumption that the malicious clients tend to exploit the
neural network through minor and imperceptible filters, and then manipulate
their activation to misclassify. As a result, FLAP removes those filters that
have been trained with the least significant values.

FC Layers Sampling. Finding pruning candidates at FC layers is comparably
more complicated because the parameters within a FC layer tend to be very
similar to each other if we do not take the cross-layer computation into account.
The least value-based pruning without local retraining usually causes severe
performance degradation to the model. FLAP takes advantage of the data-
agnostic cross-layer saliency-based pruning that has been studied in [15], where
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the pruning is conducted in a pair-wise manner. Given a candidate pair of hidden
units, we remove one of its units and double the weight of the other unit, which
is expected to supersede the role of the pruned unit.

To find the proper units to be pruned, we first iterate all units in a FC layer
and form pairs for them. We then assess the propagated impact of pruning a
pair of hidden units in the middle layer, which is calculated as a range/interval
depending on the legitimate value ranges of the model input. The potential
impact of pruning is jointly measured by the l1-norm and entropy of the prop-
agated impact. When FLAP prunes a FC layer, it sorts all unit pairs by their
impact values and removes the pairs with the lowest impact values.

Global Model Pruning. Considering the pruning process is proposed to rein-
force the reliability of the FL model, FLAP does not alter the model structure
during the pruning. Instead, it zeros out the parameter values of all the pruned
units. The pruned model becomes the global model of the next round of FL and
will be broadcast to all clients for their local training. Overall, we let p denote
the pruning process, and thus, the global model can be defined by a modified
form of Eq. 1 as follows:

wt
Global = p

(
wt−1

Global + α · gt
Global

)
(2)

5 Evaluation

5.1 Experiment Setup

We implement FL based on a public repository2. The FLAP and the tested
adversarial models are implemented based on TensorFlow. All the presented
results are the median value observed from at least five repeated executions.

Federated Learning. The simulated FL is composed of 80 participating
clients. The distributed training is uniformly configured for each client. Each
round of the client’s local training consists of two epochs, with the learning rate
set to 0.001 and the Adam optimizer applied. FedAvg is selected as the default
aggregation algorithm. Our experiments begin with 20 rounds of benign train-
ing, which can help the global model maintain stable prediction accuracy. We
consider malicious clients to start attacking from the 21st round. By default,
16 out of 80 participating clients (20%) are malicious that collude with each
other in conducting model poisoning attacks. We uniformly set the attack goal
as misleading the global model to predict the first class as the seventh class.

Pruning. We note that the pruning may not be necessarily carried out for every
round of FL. Instead, we stipulate that the server performs pruning from the
first round and repeats every five rounds. For each pruning operation, the server
zeros out 1% of filters from every Conv layer and 1% of hidden units from every
FC layer, by zeroing out their corresponding parameters3.
2 https://github.com/pps-lab/fl-analysis.
3 One unit will be pruned if the layer has less than 100 units.

https://github.com/pps-lab/fl-analysis
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Models and Datasets. We select FEMNIST and use three different model
architectures in our evaluation, including a five-layer MLP, a LeNet-5 ConvNet,
and a ResNet-18 model.

Fig. 2. Test accuracy and loss of FL up to round 20, with and without FLAP

5.2 Benign FL with FLAP

Our first set of experiments aims to investigate if FLAP suits the FL as a post-
aggregation optimization. More specifically, we wish to figure out the question
“how does FLAP preserve the fidelity of FL in a non-adversarial circumstance? ”.
To this end, we apply FLAP on all three models under the benign settings and
compare the learning process with the FL without it. We evaluate the global
model after each round’s aggregation and record the test accuracy and loss.

Figure 2 presents the test accuracy and loss value of the first 20 rounds, with
and without the equipment of FLAP. We find that the growth of test accuracy
of models with FLAP is almost identical with the models without it. We also
observe that the adoption of FLAP accelerates the loss descent on LeNet-5 and
MLP models. In summary, FLAP shows promising fidelity preservation on all
three models. The adoption of FLAP does not impair the learning process.

5.3 FLAP in Adversarial Settings

Next, we explore whether FLAP can boost existing defensive techniques towards
Byzantine-robust FL. We focus on using the ResNet-18 model to compare FLAP
with the existing techniques against various adversarial models.

Starting from round 21, we deploy a model poisoning attack for ten rounds
to the default setting of FL. We test our approach with two representative
Byzantine-resilient aggregation algorithms. We also learn that the malicious
clients in FL may strengthen their attack capacity by gaining extra knowledge
from the server and benign clients, and therefore we assess our approach with
two advanced adversarial models proposed by Fang et al. [5], namely partial
knowledge attack and full knowledge attack.

In our experiments, we evaluate the robustness of the global model by cal-
culating the average error rate of consecutive ten rounds of adversarial learning.
We also record the average test accuracy of the global model to reflect the overall
learning process. The experimental results can be found in Table 1.
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Byzantine-Resilient Aggregations. We replace FedAvg with Byzantine
resilient aggregations, namely trimmed mean and multi-Krum, and repeat our
previous experiments with the default adversarial settings. Both algorithms are
configurable with a parameter, which defines the estimated upper bound of
Byzantine attackers among all participating clients [2]. For each algorithm, we
define three modes, named conservative (C mode), perfect (P mode) and radical
(R mode). The C mode simulates the server underestimating the existence of
malicious clients, the R mode stipulates that the server overestimates the popu-
lation of malicious clients, and the P mode defines that the server estimates the
exact population of malicious clients. These three modes estimate the percentage
of malicious clients to be 10%, 30%, and 20%, respectively.

Table 1. Average error rates and test accuracy of FL (ResNet-18) in various adversarial
settings, with (shown in bold text) and without FLAP (shown in plain text).

Aggregation Rules Auxiliary Defense Adversarial Modes
Targeted Label Flipping Partial Knowledge Full Knowledge

Error Rate (Lower is Better)∗

FedAvg Nil 30.8%, 20.0% (�) 62.8%, 20.0% (�) 40.0%, 20.0% (�)

Trimmed Mean† Nil (C) 87.0%, 74.7% (�) (C) 72.5%, 62.9% (�) (C) 67.2%, 35.4% (�)

(P) 30.0%, 17.5% (�) (P) 22.9%, 17.5% (�) (P) 38.1%, 33.0% (�)

(R) 11.4%, 9.8% (�) (R) 11.5%, 9.8% (�) (R) 12.7%, 10.6% (�)

ERR+LFR (C) 59.2%, 20.0% (�) (C) 80.0%, 71.3% (�) (C) 84.6%, 68.3% (�)

(P) 16.8%, 15.6% (�) (P) 16.9%, 15.6% (�) (P) 22.7%, 16.3% (�)

(R) 5.8%, 5.8% (=) (R) 5.8%, 4.2% (�) (R) 9.6%, 9.3% (�)

Multi- Krum† Nil (C) 84.3%, 83.7% (�) (C) 93.3%, 74.8% (�) (C) 83.5%, 73.9% (�)

(P) 22.7%, 20.0% (�) (P) 22.7%, 15.6% (�) (P) 20.6%, 14.2% (�)

(R) 28.8%, 27.3% (�) (R) 28.9%, 19.5% (�) (R) 22.3%, 20.0% (�)

ERR+ LFR (C) 84.6%, 83.8% (�) (C) 79.2%, 68.3% (�) (C) 83.5%, 75.4% (�)

(P) 22.7%, 20.0% (�) (P) 22.7%, 16.3% (�) (P) 20.6%, 14.2% (�)

(R) 28.7%, 22.3% (�) (R) 27.9%, 21.0% (�) (R) 28.1%, 17.9% (�)

Test Accuracy (Higher is Better)∗

FedAvg Nil 10.3%, 10.9% (�) 10.1%, 10.1% (=) 9.0%, 9.2% (�)

Trimmed Mean† Nil (C) 11.5%, 14.6% (�) (C) 13.5%, 17.3% (�) (C) 15.8%, 18.4% (�)

(P) 92.1%, 97.8% (�) (P) 92.3%, 93.2% (�) (P) 15.8%, 18.4% (�)

(R) 94.6%, 95.1% (�) (R) 93.9%, 94.8% (�) (R) 92.5%, 92.1% (�)

ERR+ LFR (C) 11.2%, 11.0% (�) (C) 11.3%, 16.5% (�) (C) 12.8%, 14.1% (�)

(P) 93.4%, 93.0% (�) (P) 93.4%, 93.9% (�) (P) 93.4%, 93.2% (�)

(R) 95.8%, 96.0% (�) (R) 94.6%, 94.9% (�) (R) 95.6%, 95.6% (=)

Multi- Krum† Nil (C) 34.5%, 56.0% (�) (C) 35.4%, 56.2% (�) (C) 37.6%, 52.2% (�)

(P) 35.6%, 43.5% (�) (P) 36.0%, 44.7% (�) (P) 35.5%, 44.2% (�)

(R) 35.3%, 44.2% (�) (R) 36.0%, 45.9% (�) (R) 35.6%, 46.9% (�)

ERR+ LFR (C) 34.5%, 56.1% (�) (C) 34.5%, 56.2% (�) (C) 38.8%, 60.9% (�)

(P) 35.5%, 43.4% (�) (P) 36.0%, 44.7% (�) (P) 35.5%, 45.9% (�)

(R) 35.3%, 44.2% (�) (R) 35.3%, 47.7% (�) (R) 35.4%, 46.9% (�)
∗ We use “(�)”, “(=)” and “(�)” to represent a decrease, no change, and growth,
respectively.
† Three parametric settings are adopted in both trimmed mean and multi-Krum aggre-
gation algorithms: (C ), (P), and (R) stand for Conservative, Perfect, and Radical
modes, respectively.
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Our results show that the adoption of Byzantine-resilient aggregations helps
reduce the error rate and improve the test accuracy, however, only when the
server sufficiently estimates the presence of malicious clients (i.e., the P mode).
We learn that any mis-estimiation of the population of malicious clients causes
a negative impact on the FL in terms of test accuracy and error rate. This high-
lights the necessity of defensive techniques that are independent of the server’s
knowledge regarding the attackers’ population.

Our evaluation demonstrates that FLAP can improve the FL in all three
modes of the two aggregation algorithms. The adoption of FLAP reduces the
error rate by up to 12.5% for the trimmed mean model (P mode) and 2.7% for
the multi-Krum model (P mode). On this basis, FLAP also helps FL to better
converge as we record a growth of test accuracy at up to 5.7% from the trimmed
mean model (P mode) and 21.5% from the multi-Krum model (C mode).

Advanced Adversarial Models. Our next set of experiments aims to investi-
gate whether FLAP makes FL more Byzantine-robust against the SOTA adver-
sarial models. We simulate the two adversarial models specially designed for
FL [5] and evaluate our approach against them. Moreover, we also compare our
approach with the prediction-based defenses proposed in the same paper. We
take the most radical defense named ERR+LFR as the baseline4.

From Table 1, we observe that the two adversarial models overall stimulate
the adversarial effectiveness when a defensive aggregation algorithm is deployed.
They incur a higher error rate without significantly impairing the test accuracy
and therefore can more stealthily poison the global model. Besides that, the
ERR+LFR defense is shown to be effective in most cases, especially when the
aggregation algorithms are deployed in P mode and R mode.

We also find that our approach can boost the ERR+LFR as a post-
aggregation defense. We record an error rate reduction at up to 10.2% (multi-
Krum R mode) and a test accuracy increment at up to 22.1% (multi-Krum C
mode) by applying FLAP to the ERR+LFR defense against the full-knowledge
attack. Even if we compare the models that are either equipped with ERR+LFR
only (i.e., without FLAP) or FLAP only (i.e., absence of ERR+LFR), we find
our approach still achieves a lower error rate than the ERR+LFR defense in all
scenarios of the multi-Krum setting and two out of six scenarios of the trimmed
mean setting. FLAP also manages to outperform the ERR+LFR defense in 14
out of 18 scenarios of two settings with regard to the test accuracy, indicating
FLAP better assists the FL towards the learning target.

Summary. FLAP is shown effective towards Byzantine-robust FL in both
benign and adversarial environments. It can co-exist with existing defenses
including Byzantine-resilient aggregations and auxiliary prediction-based tech-
niques and even outperforms them in most cases. More importantly, FLAP can
boost those defenses to achieve a higher degree of Byzantine robustness, espe-
cially when the server underestimates the presence of malicious clients.
4 We assume the perfect estimation that 20% of clients are excluded due to high loss

function value and another 20% of clients are excluded due to low accuracy.
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6 Discussion

Limitations and Future Work. First, FLAP supports pruning for both FC
and Conv layers. For that reason, we may achieve a higher degree of Byzantine
robustness if we broaden the FLAP’s support for pruning residual blocks. In
addition, the server has no access to the training set but owns some data in a
similar distribution for testing purposes. That gives us a chance to prune the
model in a supervised manner with the testing data. We aim to explore the test
set guided pruning in the future.

Broader Impacts. To the best of our knowledge, this is the first work that
explores the pruning by the FL server without the reliance on clients’ contribu-
tion. FLAP does not request any training data or training outputs from clients,
therefore it is difficult to be manipulated by malicious participants. It takes place
after the aggregation so that it can co-exist with the existing defenses and boost
their effectiveness. This paper will help the research community’s exploration
of more defense techniques to be adopted in FL, and contribute to achieving
efficient privacy-preserving machine learning [23,29].

7 Conclusion

In this paper, we propose FLAP, a post-aggregation pruning technique to boost
the Byzantine robustness of FL, based on our insight that pruning can effec-
tively mitigate the unfavorable and malicious parameters learned in adversar-
ial training. We evaluate the proposed FLAP with different models, assess its
effectiveness against different adversarial models, and compare it with existing
defensive techniques. Our empirical study demonstrates that FLAP can reduce
the error rate and preserve the fidelity of FL equipped with different aggrega-
tion algorithms under various adversarial settings. FLAP also shows a promising
capacity to reinforce the existing defensive techniques against the SOTA adver-
sarial models to achieve a higher degree of Byzantine robustness.
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