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Abstract—When deploying pre-trained neural network models
in real-world applications, model consumers often encounter
resource-constraint platforms such as mobile and smart devices.
They typically use the pruning technique to reduce the size
and complexity of the model, generating a lighter one with
less resource consumption. Nonetheless, most existing pruning
methods are proposed with a premise that the model after being
pruned has a chance to be fine-tuned or even retrained based on
the original training data. This may be unrealistic in practice,
as the data controllers are often reluctant to provide their model
consumers with the original data.

In this work, we study the neural network pruning in the data-
free context, aiming to yield lightweight models that are not only
accurate in prediction but also robust against undesired inputs in
open-world deployments. Considering the absence of fine-tuning
and retraining that can fix the mis-pruned units, we replace the
traditional aggressive one-shot strategy with a conservative one
that treats model pruning as a progressive process. We propose
a pruning method based on stochastic optimization that uses
robustness-related metrics to guide the pruning process. Our
method is evaluated with a series of experiments on diverse
neural network models. The experimental results show that
it significantly outperforms existing one-shot data-free pruning
approaches in terms of robustness preservation and accuracy.

Index Terms—Neural networks, pruning, model optimization,
robustness.

I. INTRODUCTION

Nowadays deep learning is increasingly applied in solving

complex real-world problems, such as cybersecurity [1]–[3]

and sport analytic [4], [5]. Deep learning is usually realized

by a neural network model that is trained with a large amount

of data. Compared with other machine learning models such

as linear models or support vector machine (SVM) models,

neural networks, or more specifically deep neural networks,

are empirically proven to gain an advantage in handling more

complicated tasks due to their superior capability to precisely

approximate an arbitrary non-linear computation.

In order to achieve a favorable accuracy and generalization,

the common practice to train a neural network is to initialize

a model that is large and deep in size. This causes the

contemporary models over-parameterized. For example, many

models in image classification or natural language processing

contain millions or even billions of trainable parameters [6],

[7]. Deploying them on resource-constraint platforms, such as

the Internet of Things (IoT) or mobile devices, thus become
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challenging. To resolve this issue, the neural network pruning
technique is extensively used. It aims to remove parameters

that are redundant or useless, so as to reduce the model size

as well as the demand for computational resources.

Most existing research on model pruning assumes the prun-

ing is performed by the model owner who has the original

training dataset. The majority of existing pruning techniques

are discussed with a premise that the models after being pruned

are going to be fine-tuned or even retrained using the original

dataset [8]–[11]. As a result, they tend to use aggressive and

coarse-grained one-shot pruning strategy with the belief that

the mis-pruned neurons, if any, could be fixed by fine-tuning

and retraining.

This strategy, however, seriously compromises the applica-

bility of pruning. In practice, the model pruning is mostly

performed by the model consumers to adapt the model for

the actual deployment environment. We refer to this stage

as the deployment stage, to differentiate it from the training

and tuning stages occurring at the data controller side [12].

In the deployment stage, the model consumers typically have

no access to the original training data that are mostly private

and proprietary [13]. In addition, data controllers even have to

refrain from providing their data due to strict data protection

regulations like the EU General Data Protection Regulation

(GDPR) [14]. Therefore, pruning without its original training

data, which we refer to as data-free pruning, is desirable.

In this work, we approach this problem through the lens of

software engineering methodologies. To address the challenge

of the lack of post-pruning fine-tuning, we design our pruning

as a supervised iterative and progressive process, rather than

in a one-shot manner. In each iteration, it cuts off a small set

of units and evaluates the effect, so that the mis-pruning of

units that are crucial for the network’s decision making can be

minimized. We propose a two-stage approach to identify the

units to be cut off. At the first stage, it performs a candidates

prioritizing based on the relative significance of the units. At

the second stage, it carries out a stochastic sampling with

the simulated annealing algorithm [15], guided by metrics

quantifying the desired property. This allows our method to

prune the units that have a relatively low impact on the

property, and eventually approaches the optimum.

Our pruning method is designed to pursue robustness
preservation, given that the model may be exposed to un-

expected or even adversarial inputs [16]–[18] after being
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deployed in a real-world application scenario. Our solution

is to encode the robustness as metrics and embed them

into the stochastic sampling to guide the pruning process. It

stems from the insight that a small and uniformly distributed

pruning impact on each output unit is favored to preserve

the robustness of the pruned model. We use two metrics to

quantify the pruning impact on the model robustness, namely

L1-norm and entropy. The L1-norm measures the overall scale

of pruning impact on the model’s output, in a way that a

smaller value tends to incur less uncertainty in the network’s

decision making. The entropy measures the similarity of the

pruning impact on each output unit. A smaller entropy is

obtained in the scenario that the pruning impact is more

uniformly distributed in each output unit, and therefore implies

that the pruned model is less sensitive when dealing with

undesired perturbations in inputs.

We implement our supervised data-free pruning method in a

Python package and evaluate it with a series of experiments on

diverse neural network models. The experimental results show

that our supervised pruning method offers promising fidelity

and robustness preservation. All the tested models preserves

at least 50% of its original accuracy after 50% of hidden units

have been pruned, and 50% of its original robustness even

after 70% of hidden units have been pruned. It significantly

outperforms existing one-shot data-free approaches in terms of

both robustness preservation and accuracy, with improvements

up to 42% and 66%, respectively. Our evaluation also demon-

strates that it can generalize on a wide range of neural network

architectures, including the fully-connected (FC) multilayered

perceptron (MLP) models and convolutional neural network

(CNN) models.

In summary, the contributions of this work are as follows.

• A robustness-preserving data-free pruning framework.
We investigate the robustness-preserving neural network

pruning in the data-free context. To the best of our knowl-

edge, this is the first work of this kind.

• A stochastic pruning method. We reduce the pruning

problem into a stochastic process, to replace the coarse-

grained one-shot pruning strategy. The stochastic pruning is

solved with the simulated annealing algorithm. This avoids

mis-cutting off those hidden units that play crucial roles in

the neural network’s decision making.

• Implementation and evaluation. We implement our pun-

ning method into a Python package and evaluate it with a

series of experiments on representative datasets and mod-

els. Our evaluation covers not only those models trained on

datasets commonly used in the research community such as

MNIST and CIFAR-10, but also models designed to solve

real-world problems such as credit card fraud detection and

network intrusion, demonstrating that our proposed pruning

can generalize on different robustness-sensitive tasks.

We have made our source code available online1 to facilitate

future research on the model pruning area.

1https://github.com/mark-h-meng/nnprune

II. BACKGROUND

A. Neural Network Pruning

A typical deep neural network is a MLP architecture that

contains multiple fully connected layers. For this reason,

deep neural networks are widely recognized as an over-

parameterized and computationally intensive machine learning

technique [19]. Neural network pruning was introduced as an

effective relief to the performance demand of running them

with a limited computational budget [20]. In recent years, as

deep neural networks are increasingly applied in dealing with

complex tasks such as image recognition and natural language

processing, network pruning and quantization are identified

as two key model compression techniques and have been

widely studied [11], [21]–[29]. Existing pruning techniques

could be grouped into two genres. One genre of pruning

is done by selectively zeroing out weight parameters (also

known as synapses). This type does not really reduce the size

and computational scale of a neural network model, but only

increases the sparsity (i.e., the density of zero parameters) [30].

Therefore, that genre of pruning is categorized as unstructured
pruning in the literature [23], [24]. In contrast, the other genre

called structured pruning emphasizes cutting of entire hidden

unit with all its synapses off from which layer it is located,

or removal of specific channel or filter from a convolutional

layer [10], [22], [31].

Pruning target is the common metric to assess neural

network pruning. It indicates the percentage of parameters or

hidden units to be removed during the pruning process, and

therefore it is also known as sparsity in some literature on

unstructured pruning. Fidelity is another metric that describes

how well the pruned model mimics the behavior of its original

status and is usually calculated through accuracy. An ideal

pruning algorithm with promising fidelity should not incur a

significant accuracy decline when compared with the original

model. However, the discussion of the impact of pruning

to measurements beyond fidelity, such as robustness, is still

in its nascent phase [32]. As robustness is a representative

property specification of a neural network model that concerns

the security of its actual deployment, unveiling the influence

of pruning on robustness could provide a guarantee to the

trustworthiness of pruning techniques.

B. Stochastic Optimization

Stochastic optimization refers to solving an optimization

problem when randomness is present. In recent years, stochas-

tic optimization has been increasingly used in solving software

engineering problems such as testing [33] and debugging [34].

The stochastic process offers an efficient way to find the

optimum in a dynamic system when it is too complex for

traditional deterministic algorithms. The core of stochastic

optimization is the probabilistic decision of its transition

function in determining whether and how the system moves to

the next state. Due to the presence of randomness, stochastic

optimization has an advantage in escaping a local optimum
and eventually approaching the global optimum.
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The simulated annealing algorithm [15] is an extensively

used method for stochastic optimization. It is essentially

proposed as a Monte Carlo method that adapts the Metropolis-

Hastings algorithm [35] in generating new states of a ther-

modynamic system. At each step, the simulated annealing

calculates an acceptance rate based on the current temperature,

generates a random probability, and then makes a decision

based on these two variables. In case the generated proba-

bility is less than the acceptance rate, the system accepts the

currently available neighboring state and accordingly moves to

the next state; otherwise, it stays at the current step and then

considers the next available neighboring candidate. In gen-

eral, the simulated annealing algorithm provides an efficient

approach to drawing samples from a complex distribution.

III. PROBLEM DEFINITION

A. Robustness of Neural Networks

Robustness is a feature representing the trustworthiness of

a neural network model against real-world inputs. The real-

world inputs may be from an undesired distribution, and are

often with distortions or perturbations, either intentionally

(e.g., adversarial perturbations) or unintentionally (e.g., blur,

weather condition, and signal noise) [36]. For this reason,

robustness is particularly crucial in the open-world deployment

of a neural network model.

The evaluation of robustness is discussed against adversarial

models, such as projected gradient descent (PGD) attack

and fast-gradient sign method (FGSM). Take FGSM as an

example, the adversary can generate an L∞-norm untargeted
perturbation for an arbitrary test sample. The untargeted

perturbation is calculated with the negative sign of the loss

function’s gradient and then multiplied with ε before adding

to the benign input. The ε is usually a very small fraction to

ensure the adversarial samples are visually indistinguishable

from those benign ones [16]. By doing that, an adversarial

input tends to maximize the loss function of the victim neural

network model and thereby leads the model to misclassify.

The FGSM is an effective attack model to evaluate robustness

and has been extensively applied in both literature [16], [37]

and mainstream toolkits such as TensorFlow. Accordingly, we

adopt FGSM as the default attack model and assume input

perturbations are measured in L∞-norm in this work.

Given an adversarial strategy, the attacker can modify an

arbitrary benign input with a crafted perturbation to produce

an adversarial input. We formalize the robustness property of

the neural network model as follows.

Definition III.1 (Robustness against adversarial perturba-

tions). Given a neural network model f , an arbitrary benign

instance x sampled from the input distribution (e.g., a dataset)

X , and an adversarial input xadv which is produced by a spe-

cific adversarial strategy based on x, written as xadv = adv (x).
The model f satisfies the robustness property with respect to

x, if it makes consistent predictions on both x and xadv, i.e.,

f (x) = f (xadv).

Fig. 1: An illustration of the primitive pruning on
〈
ali, a

l
j

〉
B. Robustness-preserving Pruning

Our pruning method aims to preserve the robustness of a

given neural network model. Following a previous study [37],

we define this preservation as the extent that the pruned model

can obtain the maximum number of consistent predictions

of both benign and adversarial inputs, and accordingly, we

name those inputs of consistent predictions as robust instances.

Thus, we propose an objective function specifying the number

of robust instances from a given distribution. The robustness-

preserving pruning then becomes an optimization problem

that aims to identify a pruning strategy towards maximizing

the objective function. We formalize our goal of robustness-

preserving pruning as follows.

Definition III.2 (Robustness-preserving pruning). Given a

neural network model f that takes inputs and labels from

distribution X . Each input x has a corresponding label y,

written as (x, y) ∈ X . Let xadv be the adversarial input

that adds perturbations to a benign input x. Our goal is to

find a pruning method π that transforms the original neural

network model f to a pruned one g, which maximizes the

objective function Z(π) that counts the occurrence of robust

input instances from the distribution X , written as:

Z(π) = |{x| (g (xadv) = g (x) = y) ∧ (x, y) ∈ X}| (1)

IV. APPROACH OVERVIEW

A. Saliency-based Primitive Pruning Operation

When attempting to prune a hidden unit (denoted by the

nominee, i.e., the one chosen to be pruned), our method uses

a pair-wise strategy rather than simply deleting the nominee.

In particular, our primitive pruning operation considers another

unit (denoted by the delegate, i.e., the one to cover the

nominee’s duty) from the nominee’s layer that tends to play

a similar role in making a prediction. It removes the nominee

and adjusts the parameters of the delegate so that the impact

of a single pruning operation on the subsequent layers can be

reduced. Given a nominee and delegate pair
〈
ali, a

l
j

〉
, which

are the i-th and j-th hidden units at the layer l, the primitive

pruning operation performs the following two steps.

Step (1) The nominee ali is pruned. To this end, we zero out

all parameters connecting from and to ali;
Step (2) We modify the parameters connecting from the del-

egate alj to the next layer with the sum of the parameters

of both ali and alj .
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Fig. 2: The workflow of our pruning method

The parameter update in Step (2) is carried out to offset the

impact caused by pruning the nominee. Fig. 1 illustrates our

primitive pruning operation.

To find the delegate, we use a metric called saliency, which

is proposed in a previous study [31] to assess the “importance”

of a unit when it is to be replaced by another unit in its layer.

A lower saliency means that the nominee can be replaced by

the delegate with less impact on the network. Let wl
i,j be the

weight parameter connecting the i-th hidden unit at the layer

l − 1 with the j-th hidden unit at the layer l, and bli be the

bias parameter of the i-th hidden unit at the layer l. Given

the nominee ali, its saliency with respect to the delegate alj is

measured as follows.

S
(
ali, a

l
j

)
=

∑
W l+1

i,∗∣∣W l+1
i,∗

∣∣
(
‖W l

∗,i −W l
∗,j‖2 +

∣∣bli − blj
∣∣∣∣bli + blj
∣∣
)
,

where W l
i,∗ =

{
wl

i,m|alm ∈ a[l]
}
,

W l
∗,i =

{
wl

n,i|aln ∈ a[l−1]
}

(2)

B. Workflow of the Pruning Method

Fig. 2 shows the workflow of our pruning method. It begins

with reading a pre-trained model and loading its architecture

and parameters (Stage �). Then it traverses the model layer

by layer and iteratively performs hidden unit pruning. The

pruning process (Stage �-�) might be executed in multiple

epochs, depending on the pruning target and pruning batch

size per epoch. Once the pruning target has been reached, our

method saves the pruned model (Stage �).

Below we brief each component in the pruning process. The

outer loop specifies an epoch, in which a fixed portion of fully

connected units (i.e., the batch size) will be cut off from the

model. The inner loop represents the iteration of all layers

in a forward direction. A pruning iteration is composed by

three stages, i.e., candidates prioritizing (Stage �), stochastic
sampling (Stage �) and pruning and model updating (Stage

�). The former two stages identify the units to be pruned

at each iteration, and then our method invokes the primitive

pruning operation to prune each of them.

• The candidates prioritizing stage evaluates the saliency for

every pair of hidden units at the beginning of each iteration

and generates a saliency matrix. Considering that pruning

a nominee that is hard to find a proper delegate (i.e., the

nominee has high saliency with respect to every hidden

unit in its layer) is unfavorable, we sort the list of hidden

unit pairs according to their saliency values in ascending

order and pass that list to the next stage. Those candidates

with the least saliency values are given priority to be

processed in the next stage.

• The stochastic sampling stage takes the list of pruning

candidates as input and identifies the units to be pruned.

The basic idea is to estimate how pruning a unit impacts

the prediction at the output layer, to decide whether to

keep or discard it. A naive way is to evaluate the impact

of each candidate, but this is too costly since calculating

each impact requires a forward propagation till the output

layer. We thus employ a stochastic sampling strategy with

the estimated impact as a guide in this process. Our

impact estimation and corresponding sampling strategy are

detailed in Section V.

V. SUPERVISED DATA-FREE PRUNING

In this section, we introduce our supervised pruning method.

We detail our approach of estimating how pruning a unit

impacts the prediction at the output layer (Section V-A).

With this, we can approximate the cumulative impact on the

robustness of the final model, and thus we embed it into our

sampling criterion (Section V-B). To prevent the sampling

method from being stuck at a local optimum, we employ the

simulated annealing algorithm in determining which candi-

date(s) to prune (Section V-C).

A. Estimation of Pruning Impact

Because the primitive pruning operation prunes the nominee

and modifies the value of parameters connecting from the

delegate to the next layer, it affects the computation of

the hidden units in subsequent layers. Such impact would

eventually propagate to the output layer. In this section, we

discuss how we estimate this impact.

For an original model f that performs an n-class classifi-

cation, its output, when given a sample x, is a vector of n
numbers denoted by f (x) = [o1, ..., on]. The model g, which

is derived by pruning a unit of f , outputs another vector of

the same size, denoted by g (x) = [o′1, ..., o
′
n]. We aim to

estimate the impact at the output layer as a vector of n items,

i.e., g (x) − f (x) for any legitimate input. To achieve this,

we first approximate the valuation of hidden units involved

in the candidate pair (i.e., nominee and delegate) by interval

arithmetic based on the bounds of normalized input. Next, we

assess the impact caused by a primitive pruning operation on

the subsequent layer where the pruning operation is performed.

In this process, we quantify the impact as an interval. After

obtaining the impact on the subsequent layer, we apply the
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forward propagation until the output layer, so that the pruning

impact on the output layer can be derived.

We adopt the abstract interpretation that is commonly used

in the literature of neural network verification [38], [39] to

estimate the upper and lower bounds of an arbitrary hidden

unit. To achieve that, we need to define the scope of a

legitimate input as an interval. As input normalization is

a common pre-processing practice prior to model training,

the value of an input feature is usually restricted to a fixed

range (e.g., [0, 1]). With a vector of intervals provided as the

input, we perform the forward propagation to approximate

the valuation of the involved hidden units. This propagation

simulates the computation within a neural network model

with a specific input. During the propagation, we leverage the

interval arithmetic to calculate the upper and lower bounds. In

the actual implementation, we build a map of intervals for all

hidden units of the neural network at the beginning of pruning.

Due to each primitive pruning modifies parameters at the next

layer, we update the map with the latest estimation after each

iteration specifies the batch pruning at the same layer.

For an arbitrary hidden unit at the (l + 1)-th layer al+1
k ∈

a[l+1], its impact caused by a primitive pruning of
〈
ali, a

l
j

〉
can be formulated as Eq.3 below.

Δal+1
k =

(
wl+1

j,k + wl+1
i,k

)
alj −

(
wl+1

i,k ali + wl+1
j,k alj

)
= wl+1

i,k

(
alj − ali

) (3)

We can obtain the latest estimation of both ali and alj from

the map of intervals that we have built at the beginning. Since

all weight parameters are known in the white-box setting, we

can also quantify the impact Δal+1
k as an interval.

Next, we perform another round of forward propagation to

simulate the impact of affected hidden units from the layer l+1
to the output layer. The value to be propagated in this round

is no longer the interval of input, but the impact of affected

hidden units as intervals. The propagated impact at the output

layer could be treated as the estimated result of g (x)− f (x)
for the current pruning operation, where f and g stand for

the original model and the pruned model, respectively. The

propagated impact on the output for each pruning operation

will be accumulated along with the pruning progress. We call

it cumulative impact to the output layer and use Δa[out] to

denote it in the remaining of this section.

B. Sampling Criterion

Our sampling criterion is proposed based on an insight that

a small and uniformly distributed cumulative impact is less

possible to drive the pruned model to generate an output that

is different from the original one, even the input is with an

adversarial perturbation. On the contrary, the pruning impact

with a variety of scales and values is considered to impair the

robustness because it makes the pruned model sensitive that

its prediction may flip when encountered a perturbation in the

input. Our proposed criterion is composed of two metrics.

• One metric accounts for the scale of cumulative impact on

the output layer. A greater scale means the current pruning

operation generates a larger magnitude of impact on the

output layer.

• The other is based on the entropy that assesses the degree

of similarity of cumulative impact on each output unit. A

greater entropy implies the pruning impact on each output

node shows a lower similarity.

Our sampling strategy jointly considers both metrics and

favors both to be small.
Metric #1: Scale: As we can obtain the cumulative impact

as a vector of intervals, we adopt the L1-norm to assess the

scale of cumulative impact. Here we use (u−, u+) to represent

the impact bounds of an arbitrary node u at the output layer

and let the term NORM denote the L1-norm of the intervals.

The formula to calculate NORM is shown in Eq. 4.

NORM
(
Δa[out]

)
=

∑
(u−,u+)∈Δa[out]

∣∣u+ − u−
∣∣ (4)

Metric #2: Entropy: We apply Shannon’s information
entropy [40] to measure the similarity of cumulative impact

on each output unit. Our measurement of the similarity for a

pair of intervals is adopted from existing literature [41], [42],

as defined below.

Definition V.1 (Similarity of interval-valued data). Given a

list of intervals U = {u1, u2, ..., u3}, and each interval is

composed of its lower and upper bounds such as ui =[
u−i , u

+
i

]
. Let m− = minui∈U

{
u−i

}
be the global minimum

of U , i.e., the minimum of lower bounds, and similarly,

m+ = maxui∈U
{
u+
i

}
be the global maximum. The similarity

degree of relative bound difference between two intervals ui

and uj is defined as:

Simij = 1− 1

2

∣∣u−i − u−j
∣∣+ ∣∣u+

i − u+
j

∣∣
m+ −m−

(5)

With this definition, we say two intervals ui and uj are φ-

similar if Simij ≥ φ for any similarity threshold φ = [0, 1].

Next, we measure the overall similarity of an interval with

all other intervals in a list, and we call it density of similarity.

We adopt the calculation of the density of φ-similarity for

an interval from an existing study [42], which is defined as

follows.

Definition V.2 (Density of similarity). For an interval ui

from a list of intervals U = {u1, u2, ..., u3}, its density

of φ-similarity among U is measured by the probability of

an arbitrary interval (other than ui) is φ-similar with itself,

calculated as:

ρφ (ui) =
|{uj |Simij ≥ φ, ∀uj ∈ U\ {ui}}|

|U | (6)

With the density of similarity, we define the metric as the

entropy of the cumulative impact on the output layer, written

as ENT . The formula of ENT calculation is shown in Eq.7.

ENT
(
Δa[out]

)
= −

∑
ui∈Δa[out]

ρφ (ui) · log ρφ (ui) (7)
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The similarity threshold φ is in the range [0, 1]. With the

same set of intervals, a higher φ results in a lower density of

similarity such that it makes entropy calculation more sensitive

to the difference of those intervals. In our work, the cumulative

impact is obtained after a forward propagation of several layers

and therefore might be in a large magnitude. Accordingly,

we set 0.9 as the default value of φ to maintain a variety

of similarity densities rather than all equal to one2.

Synthesis: We introduce a pair of parameters (α, β) to

specify the weight of these two metrics. Considering these

two metrics may have different magnitude, and particularly,

the NORM is unbounded (i.e., no upper bound), we use a

sigmoid function (σ) to normalize these two metrics in the

final criterion. Due to the concave and monotonic nature of

sigmoid logistic function for values greater than zero, it can

output bounded results within (−1, 1) with their values’ order

the same with input, denoted as x1 < x2 ⇔ σ (x1) < σ (x2).
On the whole, the definition of our sampling criterion is given

in Eq. 8 below.

Energy(α,β)

(
Δa[out]

)
= α · σ

(
NORM

(
Δa[out]

))
+β · σ

(
ENT

(
Δa[out]

))
,

subject to α ≥ 0, β ≥ 0, β = 1− α

(8)

We use the term energy to represent our sampling criterion

to echo the simulated annealing algorithm used in our guided

stochastic sampling strategy, which will be presented in the

next subsection.

C. Guided Stochastic Sampling

Since the sampling criterion can reflect the impact of the

unit pruning on the model robustness, a naive way is to

calculate energy (Eq. 8) for every pair and prune the unit with

the least value. However, this is too expensive because each

calculation requires a forward propagation in a fully connected

manner. To address this, we use a stochastic sampling guided

by the energy-based heuristic to identify the candidates to

be pruned. Our method is presented in Algorithm 1, and we

discuss it in the remainder of this section.

We exploit the idea of simulated annealing to implement our

sampling strategy through the lens of stochastic optimization.

In particular, our method traverses the hidden unit pairs from

the candidates prioritizing result one by one. In the beginning,

our method by default accepts the first candidate from the

prioritizing result and records its energy as the evaluation of

the current state. Upon receiving a new pruning candidate, the

method calculates the energy of that candidate, compares it

with the current state, and decides whether to prune it during

the current iteration, according to an acceptance rate calculated

based on a temperature variable T . The temperature variable is

adopted from the thermodynamic model. The descent of tem-

perature value reflects the solving progress of the optimization

2A comparably greater value of φ is needed to maintain a favorable distin-
guishable degree among hidden units’ outputs rather than always producing
a similarity density equals 1. For this reason, the value 0.9 is used.

Algorithm 1 Supervised pruning with a stochastic heuristic

Input: An n-layer model to be pruned (qt−1), cumulative impact of
all previous pruning (Δa[out]), weights used in sampling criterion
(α, β), batch size (k), current temperature Tt−1

Output: A pruned deep learning model qt, updated cumulative
impact of pruning Δa[out], the list of hidden units pruned pl,
the updated temperature Tt

1: for layer l in all hidden layers do
2: load parameters of the current layer Σl

3: build a saliency matrix M l for the unit pairs
4: sort the saliency matrix M l in ascending order
5: set energyt−1 ← 0
6: for hidden unit pair 〈i, j〉 in the first k values in M l do
7: simulate a pruning of 〈i, j〉 and calculate the impact on the

output layer Δp

8: calculate temporary cumulative impact tempΔa[out] ←
Δa[out] +Δ〈i,j〉

9: calculate NORM and ENT with tempΔa[out]

10: calculate sampling criterion energy′ ← α ·σ (NORM)+
β · σ (ENT )

11: if (energyt−1 > 0) and (energy′ > energyt−1) then
12: calculate acceptance rate P based on temperature Tt−1

and energy′

13: generate a random probability rand
14: if (rand ≥ P ) then
15: reject the current 〈i, j〉 and go to the next one
16: end if
17: end if
18: append 〈i, j〉 into a pruning candidate list Ll

19: accept and perform pruning
20: update energyt−1 ← energy′

21: end for
22: update Δa[out] with Ll

23: update temperature Tt ← Tt−1

24: end for

problem – as temperature decreases, our method would less

possibly accept a pruning candidate with an energy greater

than the current state. Here we define the temperature used

in our method as the portion of the remaining pruning task,

which equals 1 at first and approaches 0 when the pruning

target is reached. Given the temperature of the current iteration

written as Tt−1, the assessment of the last drawn (accepted)

candidate energyt−1, we can obtain the acceptance rate of the

next candidate (line 12 of Algorithm 1) once we calculate its

energy (written as energy′, line 10) according to Eq. 8. The

formula of acceptance rate is provided as follows.

P = min

(
1, exp

(
−energy′ − energyt−1

Tt−1

))
(9)

As Eq. 9 shows, our method automatically accepts a candidate

if its energy is lower than the one in the current state;

otherwise, a random probability will be generated and tested

against the acceptance rate to determine whether we accept

or discard the candidate. This procedure is reflected as lines

11-20 of Algorithm 1.

There are two obvious advantages of this stochastic process.

First, applying such randomization in sampling is less expen-

sive than computing energy of all candidates and sorting.

Moreover, the stochastic process through simulated annealing
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TABLE I: Datasets and models used in evaluation

Models & Datasets Model Architecture Num. of Parameters
1 Credit Card † 4-layer MLP 6,145

2 KDD Cup’99 ‡ 6-layer MLP 245,655

3 MNIST 5-layer MLP 125,898

4 CIFAR-10 13-layer CNN (3 FC layers) 753,866

† Available at https://www.kaggle.com/mlg-ulb/creditcardfraud.
‡ Available at http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

enables us to probabilistically accept a candidate that may not

have the lowest energy at the current step. This helps prevent

our pruning method from being stuck at a local optimum and

eventually achieves our objective.

VI. EVALUATION

This section presents the evaluation of our pruning method.

We aim to answer the following three research questions.

• RQ1: Fidelity and Robustness Preservation. How ef-

fective is our pruning method in terms of fidelity and

robustness preservation? Does our method generalize on

diverse neural network models?

• RQ2: Pruning Efficiency. Can our method complete the

pruning within an acceptable time?

• RQ3: Benchmarking. Can our method outperform one-

shot strategies in terms of robustness preservation?

A. Implementation and Experiment Settings

We implement our pruning method in Python. All neural

network models are trained, pruned, and evaluated based

on TensorFlow. Our toolkit accepts any legitimate format of

neural network models trained by TensorFlow. It also allows

the user to configure the pruning target and the number of

pruning per epoch. Given a model as input, it automatically

identifies the fully-connected hidden layers, prunes the hidden

units from them, and stops once the pruning has reached the

setting threshold (e.g., 80% of hidden units have been cut off).

To evaluate our method on diverse mainstream neural

network applications, we select four representative datasets

ranging from structured tabular data to images, with labels for

both binary classification and multi-class classification. For

each dataset, we select a unique architecture of neural network

model to fit the classification task. To this end, we refer to

the most popular example FC or CNN models on Kaggle3.

We have trained four models with different architectures,

covering both purely fully connected MLPs and CNNs. All

models are equipped with ReLU activation and are trained

with a 0.001 learning rate for 20 epochs. The number of fully

connected layers and hidden units per layer varies among these

models. The diversification of tested models is to evaluate the

generalizability of our method (RQ1). The details of the four

used datasets and pre-trained models are listed in Table I.

We empirically select the values of the parameters α and

β through a tuning process. We observe the pruning of

those multi-class models like MNIST and CIFAR-10 is more

3https://www.kaggle.com/ (accessed in July 2022).

Fig. 3: Accuracy and robustness decay of four models when

applying our supervised pruning method (up to 80% pruning)

sensitive to their values compared with binary classification

models. As the result, we find that α = 0.75 and β = 0.25
suits all the tested models, because these models use ReLU

activation where the L1-norm of pruning impact plays a more

important role than entropy. Our experiments run on an 8-core

Intel CPU (2.9GHz Core (TM) i7-10700F), 64GB RAM and

an NVIDIA GeForce RTX 3060Ti GPU.

B. RQ1: Fidelity and Robustness Preservation

Our first set of experiments is conducted to investigate the

fidelity and robustness preservation of our pruning method. As

previous studies have shown that pruning may cause the loss

of model fidelity [23], [31], we test the accuracy of all four

models during the pruning to explore the impact of our method

on it. This is crucial because a poor accuracy would undermine

the validity of robustness which only requires the model not

to produce inconsistent outputs for a given benign input and

its adversarial variant, regardless of whether the benign input

is correctly predicted or not.

We also test the robustness preservation based on the metric

given in Definition III.2. Our evaluation calculates the number

of consistent and correct classification of adversarial inputs on

both the original and pruned models, and compares these two

numbers to determine the degree of robustness preservation.

We apply this method on two models (#3-4) because their

datasets, MNIST and CIFAR-10, have been widely studied on

the subject of model robustness and trustworthiness.

With the overall pruning target set as 80% of hidden units

being pruned, our method prunes the same proportion of units

per layer at each iteration. Both the accuracy and robustness,

if applicable, are evaluated after each pruning epoch.

Fig. 3 shows the change of accuracy for each model during

the pruning process. It also tracks the robustness preservation

of our method on models #3-4 against untargeted FGSM

adversaries with different epsilon (ε) options. This parameter is

used in FGSM to measure the variation between the adversarial

and benign samples. We refer to the literature [16], [37] to find

proper values to use in our experiment4. We perform 10 rounds

4We select two values (ε = 0.01 and 0.05) for models #3-4 to examine
their robustness against perturbations in different sizes.
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TABLE II: Time consumed in pruning 80% of FC

parameters in the most conservative setting

Model Batch size (per layer) Elapsed time (secs)
#1 (Credit Card) 3.13% 30.5

#2 (KDD Cup’99) 3.13% 76.7

#3 (MNIST) 1.56% 435.4

#4 (CIFAR-10) 1.56% 265.3

of experiments on all four models and plot the median of the

experimental results in the figure.

In general, our method performs well on all four models. On

the model for binary classification, i.e., model #1, our method

imposes almost no impact on the robustness and accuracy, even

when 80% of units are pruned. For those models with more

complex classification tasks, i.e., models #2-4, our method still

achieves favorable results. All models preserve 50% of their

original accuracy when 50% of their units have been pruned.

Both models #3 and #4 preserve at least 50% of their original

robustness even after 70% of hidden units are pruned. The

change of robustness generally shares the same trend as test

accuracy (see Fig. 3).

In models #3-4, we observe that the robustness slightly

grows as the number of pruned units increases. This is because

these models are not trained with robustness preservation as

part of the objective functions, and our pruning guided by

that metrics which incorporate robustness preservation may

enhance their robustness. This on the other hand demonstrates

the effectiveness of the robustness preservation of our method.

Our first set of experiments has responded to RQ1. In

summary, our pruning method shows favorable fidelity and

robustness preservation against adversarial perturbations. It

does not show any drastic performance decay along with the

pruning progress. Our method is also able to generalize on

many types of models, as shown by the evaluation outcomes

of the four tested models.

C. RQ2: Pruning Efficiency

To explore the efficiency of our method, we run it on

the four models with a “worst-case setting”. Specifically, we

examine the case of pruning a large proportion (80%) of

the entire model, in the slowest pace (1 or 2 per layer per

epoch). This is not necessary at all and gives our method

disadvantages, but when applied in practice, it could be much

more efficient.

Table II details the time consumed by our method on each

of the four models. In general, our method can prune a model

within an acceptable time. In the multi-class prediction mod-

els, the pruning process can be completed within 8 minutes,

while in the binary classification models, the process can be

completed much faster.

D. RQ3: Benchmarking

Our second set of experiments is conducted to explore

whether our method can outperform existing one-shot data-

free pruning methods5. We compare its performance with

5Models are pruned by up to 50% as it is the upper limit of one-shot
pairwise pruning approaches by default.

Fig. 4: Improvement of our method against saliency-based

one-shot pruning on four models

that of the saliency-based one-shot pruning, which is a com-

monly used approach to perform data-free neural network

pruning [23], [31]. We note that our evaluation focuses on the

comparison of data-free pruning techniques, and we refer the

reader to the existing study [24] that compares performance

between data-driven and data-free pruning techniques.

We reuse the same four models and take the saliency-

based one-shot pruning as the baseline. The improvement of

accuracy is equal to the growth of accuracy of the pruned

model produced by our method relative to the one pruned

by the baseline method. The improvement of robustness is

calculated as the growth in the number of robust instances

observed from running our method relative to the baseline.

We present our benchmarking outcomes in Fig. 4.

We find both our method and the baseline can perform

almost a lossless pruning for model #1. That is because the

task (i.e., binary classification for credit card fraud detection)

is comparably simple and the model architecture is designed

with too much redundancy. Besides that, our method outper-

forms the saliency-based one-shot pruning in all remaining

three settings. In the experiments on MNIST and CIFAR-10

models (i.e., models #3-4), our method achieves a significant

improvement in both robustness preservation (up to 42% in

model #3) and accuracy (up to 66% in model #4). In model

#2, our method achieves much more significant improvement

with up to 3x (observed after 46% of hidden units have been

pruned), indicating that by applying our method, the model

can be further compressed to preserve a similar performance.

We also observe the change in accuracy and robustness of

a model is dependent on the utilization of its hidden units.

In model #2, the improvement of accuracy starts declining

after 45% units are pruned. By referring to Fig. 3, we find

that the model fidelity also starts declining at almost the

same time. This shows that a 45% pruning eliminates most

computationally negligible parameters in model #2 and any

further model decompression would come at the expense of

sacrifice of model fidelity. A similar phenomenon can also

be observed in the robustness improvement in model #4. The

improvement of our pruning starts declining after 45% units
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are pruned, but this phenomenon does not appear in model #3.

Although both models #3 and #4 are designed for similar tasks,

i.e., MNIST and CIFAR-10, model #3 is trained as a fully

connected MLP, while model #4 is trained as a CNN with only

a small portion of its units are fully connected. This makes

the former model contains more computationally negligible

parameters than the model of CIFAR-10, and therefore the

pruning of the former yields less impact on the robustness

than the latter one.

VII. THREATS TO VALIDITY

Our work carries several limitations that should be ad-

dressed in the future.

First, our method is primarily designed for fully connected

components of a neural network model. Fully connected layers

are fundamental components of deep learning and have been

increasingly used in state-of-the-art designs such as MLP-

Mixer [7]. Nevertheless, our method may be limited when

applied to models with convolutional and relevant layers (e.g.,

pooling and normalization) playing a major role. We still need

to explore more regarding how to effectively prune diverse

models that are not built in conventional fully connected

architecture, such as transformer models.

Second, our pruning heavily relies on interval arithmetic

in approximating the valuation of hidden units and pruning

impact, so the precision of those intervals determines both

the effectiveness and correctness of our method. When it

is applied to a ReLU-only model with a large number of

hidden layers, there may be a magnitude explosion issue

during our evaluation of propagated impact on the output layer.

Besides, pruning a model mixed with both convergent (e.g.,

sigmoid) and non-convergent (e.g., ReLU) activation may be

challenging for our method, because a convergent activation

may reduce the quantitative difference from the previous

assessment and output a similar result close to (−1, 1) — this

may reduce the effectiveness of our sampling criterion.

We share our insight for future work to mitigate these limi-

tations in two aspects. First, the data-free pruning could be ex-

tended to more layer types especially those over-parameterized

layer types like 2D convolutional layer. Additional pruning

criteria may address the first limitation. Second, a more

precise interval approximation or refinement technique could

be applied to optimize the pruning criteria. By doing this the

magnitude explosion issue of the propagated impact on the

output layer may be relieved.

VIII. RELATED WORK

Unstructured Pruning & Structured Pruning. Existing

pruning approaches can be classified into two classes, namely

unstructured pruning and structured pruning [23]. Unstruc-

tured pruning is also known as individual weight pruning,

which is performed to cut one specific (redundant) parameter

at a time. It typically prunes weight parameters based on

a Hessian of the loss function. Existing studies that can be

categorized as unstructured pruning include [24], [43].

Structured pruning is proposed to prune a model at the

hidden unit, channel, or even layer level. Hu et al. [28]

proposed a channel pruning technique according to the average

percentage of zero outputs of each channel, while another

study by Li et al. [29] presented a similar channel pruning

but according to the filter weight norm. Besides that, there is

another common approach discussed in [9], [26] that prunes

a component with the least influence to the final loss. He et
al. [25] and Luo et al. [10] proposed channel pruning based

on consequential feature reconstruction error at the next layer.

Srinivas and Babu [31] introduced a data-free pruning method

based on saliency, which performs pruning independently of

the training process and as the result, does not need to access

training data. Recent work also includes [11] that considers the

inter-correlation between channels in the same layer. Another

work by Chin et al. [27] proposes a layer-by-layer compensate

filter pruning algorithm.

In-training Pruning & Post-training Pruning. On the other

hand, depending on when the parameters’ pruning is per-

formed, we can also categorize existing pruning strategies

as either in-training pruning or post-training pruning (also

known as data-free pruning) [44]. Besides a few papers that

discuss post-training pruning [31], [45], most existing studies

are implemented as in-training pruning.

One recent in-training pruning approach named SNIP [46]

achieves single-shot pruning based on connection sensitivity

and has been exhaustively compared with existing techniques.

Hornik et al. [47] investigated a data-agnostic in-training

pruning that proposes a saliency-guided iterative approach to

address the layer-collapse issue. In-training pruning gives us a

chance to fine-tune or even retrain the pruned network with the

original dataset, and therefore it is capable to prune a larger

portion of the neural network without worrying about a severe

impact on the model fidelity (e.g., accuracy and loss). A recent

empirical study performed by Liebenwein et al. [32] reveals

the robustness could be well preserved during the mainstream

in-training pruning. Even though, post-training such as [31],

[45] are useful to reduce the size of a pre-trained ready-

to-use neural network model from a user’s perspective. The

effectiveness of post-training pruning beyond accuracy, such

as robustness preservation, has yet to be well studied.

IX. CONCLUSIONS

In this work, we propose a supervised pruning method

to achieve data-free neural network pruning with robustness

preservation. Our work aims to enrich the application scenarios

of neural network pruning, as a supplementary of the state-

of-the-art pruning techniques that request data for retraining

and fine-tuning. With our proposed sampling criterion, we

take advantage of simulated annealing to address the data-

free pruning as a stochastic optimization problem. Through

a series of experiments, we demonstrate that our method is

capable of preserving robustness while substantially reducing

the size of a neural network model, and most importantly,

without a significant compromise in accuracy. Our evaluation

shows that our pruning can generalize on diverse types of
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models and datasets. We remark that the model pruning in

the context of data-freeness is a practical problem, and more

future studies are desirable to cope with the challenges we

report in this work.
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