
Investigating Documented Privacy Changes in Android OS

CHUAN YAN, The University of Queensland, Australia

MARK HUASONG MENG, National University of Singapore, Singapore and Institute for Infocomm

Research at A*STAR, Singapore

FUMAN XIE, The University of Queensland, Australia

GUANGDONG BAI∗, The University of Queensland, Australia

Android has empowered third-party apps to access data and services on mobile devices since its genesis.
This involves a wide spectrum of user privacy-sensitive data, such as the device ID and location. In recent
years, Android has taken proactive measures to adapt its access control policies for such data, in response to
the increasingly strict privacy protection regulations around the world. When each new Android version is
released, its privacy changes induced by the version evolution are transparently disclosed, and we refer to
them as documented privacy changes (DPCs). Implementing DPCs in Android OS is a non-trivial task, due to
not only the dispersed nature of those access control points within the OS, but also the challenges posed by
backward compatibility. As a result, whether the actual access control enforcement in the OS implementations
aligns with the disclosed DPCs becomes a critical concern.

In this work, we conduct the �rst systematic study on the consistency between the operational behaviors of
the OS at runtime and the o�cially disclosed DPCs. We propose DopCheck, an automatic DPC-driven testing
framework equipped with a large language model (LLM) pipeline. It features a serial of analysis to extract the
ontology from the privacy change documents written in natural language, and then harnesses the few-shot
capability of LLMs to construct test cases for the detection of DPC-compliance issues in OS implementations.
We apply DopCheckwith the latest versions (10 to 13) of Android Open Source Project (AOSP). Our evaluation
involving 79 privacy-sensitive APIs demonstrates thatDopCheck can e�ectively recognize DPCs from Android
documentation and generate rigorous test cases. Our study reveals that the status quo of the DPC-compliance
issues is concerning, evidenced by 19 bugs identi�ed by DopCheck. Notably, 12 of them are discovered in
Android 13 and 6 in Android 10 for the �rst time, posing more than 35% Android users to the risk of privacy
leakage. Our �ndings should raise an alert to Android users and app developers on the DPC compliance issues
when using or developing an app, and would also underscore the necessity for Google to comprehensively
validate the actual implementation against its privacy documentation prior to the OS release.

CCS Concepts: • Software and its engineering→ Software testing and debugging.

Additional Key Words and Phrases: Android, privacy, testing, documentation

ACM Reference Format:

Chuan Yan, Mark Huasong Meng, Fuman Xie, and Guangdong Bai. 2024. Investigating Documented Privacy
Changes in Android OS. Proc. ACM Softw. Eng. 1, FSE, Article 119 (July 2024), 24 pages. https://doi.org/10.1145/
3660826

∗Corresponding author.

Authors’ Contact Information: Chuan Yan, The University of Queensland, Australia, uqcyan3@uq.edu.au; Mark Huasong
Meng, National University of Singapore, Singapore and Institute for Infocomm Research at A*STAR, Singapore, huasong.
meng@u.nus.edu; Fuman Xie, The University of Queensland, Australia, fuman.xie@uqconnect.edu.au; Guangdong Bai, The
University of Queensland, Australia, g.bai@uq.edu.au.

© 2024 Copyright held by the owner/author(s).
ACM 2994-970X/2024/7-ART119
https://doi.org/10.1145/3660826

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 119. Publication date: July 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
HTTPS://ORCID.ORG/0000-0003-4855-1912
HTTPS://ORCID.ORG/0000-0003-1039-2151
HTTPS://ORCID.ORG/0000-0002-5446-3081
HTTPS://ORCID.ORG/0000-0002-6390-9890
https://doi.org/10.1145/3660826
https://doi.org/10.1145/3660826
https://orcid.org/0000-0003-4855-1912
https://orcid.org/0000-0003-1039-2151
https://orcid.org/0000-0003-1039-2151
https://orcid.org/0000-0002-5446-3081
https://orcid.org/0000-0002-6390-9890
https://doi.org/10.1145/3660826

119:2 Chuan Yan, Mark Huasong Meng, Fuman Xie, Guangdong Bai

1 INTRODUCTION

Android has reserved over 70% market share of smartphone devices, according to a recent report
by Statista [62]. This remarkable success can be attributed in part to its rapid evolution. It has
been renowned for its continuous innovation, constantly introducing new features and technology
advancements, positioning it as one of the most cutting-edge mobile operation systems (OSes).
It boasts a �ourishing ecosystem of over 2.6 million third-party applications (apps) that greatly
enhance productivity and enrich users’ daily lives [7]. These apps are enabled to access data on users’
devices to ful�ll their rich functionalities. However, many of them have been reported to excessively
collect personally identi�able information (PII), ranging from email addresses to physical locations,
purportedly for user experience enhancement and personalization [40, 52, 57, 75].
In response to this challenge, updating the access control mechanisms over privacy-sensitive

data is a key component in Android’s evolution journey. Over the years, Android has implemented
a series of measures to enhance user privacy. Typical examples include the transition from granting
permissions during installation to runtime permissions request in Android 6 [32], and the introduc-
tion of one-time permissions in Android 11 [31]. In recent years, Android keeps strengthening its
privacy framework by enforcing new privacy features to restrict apps’ access to user data. This
aligns with the current global user privacy landscape, as many countries have enacted legislation to
regulate the collection and use of personal data [13, 56, 61, 65], such as the well-known General Data
Protection Regulation (GDPR) of European Union [65]. In 2018 when the GDPR was introduced,
Android 10 ceased all third-party apps’ access to non-resettable device identi�ers [18]. Since then,
Google has adopted a proactive and transparent approach, providing comprehensive documentation
on security and privacy updates with each new Android OS release [19, 21, 24, 27]. We refer to
them as documented privacy changes (DPCs). This initiative aims to raise developers’ and users’
awareness of privacy protection on Android.

The research community has conducted a comprehensive investigation into privacy protection
on Android. Numerous e�orts have been taken to scrutinize the OS-level safeguard mechanisms [48,
50, 58, 60] and analyze data harvesting behaviors of third-party apps [15, 57, 77]. However, these
provide only a partial perspective of the privacy protection within the Android ecosystem, leaving
the complementary question of whether the evolution of Android privacy mechanisms complies with

the o�cially disclosed DPCs still unsolved.
Sustaining such compliance presents a formidable challenge for mechanisms based on existing

code review and static analysis techniques [49, 63], given that the Android evolution over a decade
has made it an extraordinarily large and complex system. Indeed, evolution-induced incompatibility
issues have been reported prevalent among general APIs [34, 42, 69]. As another example when
it comes to user privacy, a recent study [50] reports that a hardware identi�er ICCID (i.e., the
serial number of the SIM card) remains accessible by apps in Android 10, despite Android’s o�cial
documentation indicating that since that version, device IDs are regulated with new privileged
permission of READ_PRIVILEGED_PHONE_STATE that is exclusively granted to privileged system
apps [22]. Such non-compliance issues may expose Android to the risk of violating the precise and
transparent disclosure requirement of GDPR (see “right to be informed” [64]), and could result in
large penalties, e.g., “a �ne of up to €20 million, or 4% of the �rm’s worldwide annual revenue” set by
GDPR [68].
Our work. In this work, we propose DopCheck (Documented Privacy Changes Checker), which
automatically identi�es DPCs fromAndroid documentation and explores evolution-induced DPC non-

compliance issues, denoted simply as DPC issues. It extracts and analyzes privacy-related texts from
the documents associated with each new release, and distills the DPC disclosures from them. Then,
it generates test cases speci�cally tailored to each DPC description, which can comprehensively

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 119. Publication date: July 2024.

Investigating Documented Privacy Changes in Android OS 119:3

validate whether the desired changes have been properly implemented. Considering that most
DPCs can be re�ected in the APIs exposed to apps, DopCheck has to craft test cases as an app in
Java with correct syntax and semantics. DopCheck runs the test cases on actual devices, assesses
whether the claimed changes operate as expected, and reports an alert when any DPC issue has
been observed. To this end, three primary challenges need to be addressed, as summarized below.
Challenge #1. Unstructured diverse textual data. The DPCs are disclosed as part of the

Android documentation, which is written in unstructured natural language varying in length,
structure, and writing quality across di�erent Android versions.
Challenge #2. Validity of complex test cases. The test cases generated by DopCheck are

encapsulated as third-party apps that must be runnable on real devices. Ensuring the validity of
these apps is crucial, as any malformed app would fail trivially. A key challenge arising is the
invocations of target APIs, which require correct API calls (e.g., the invocation sequence and
non-null arguments) and a valid Android context (e.g., intents and broadcast receivers).

Challenge #3. Various types of DPCs. DPCs involve a wide spectrum of changes, including not
only API changes that rarely request user interaction but also UI-related changes that prompt warn-
ings or refrain from displaying sensitive information. For example, Android 13 introduces sensitive
content hiding, which prevents sensitive contents from appearing in the content preview [26]. This
requires DopCheck to have the capability to handle various oracles during its testing.

To address Challenge #1, we conduct a thorough empirical study on the composition of DPCs,
and design an ontology composed of nine entity types and �ve subsumptive relationships. The
ontology serves as the backbone of DopCheck’s DPC distillation, which extracts the information
of each DPC using natural language processing (NLP) techniques, and represents it in a uni�ed
format to facilitate the test case generation. To address Challenge #2, we resort to the latest large
language models (LLMs) for test case generation, considering that LLMs are capable of assimilating
and memorizing correct syntax and semantics of the code bases they have seen in their massive
training data. We adopt a GPT-4 model [54], and conduct in-context learning to guide it with
domain knowledge. This involves designing a series of prompts based on manually crafted sample
test cases that have been validated with DPCs of Android 8 and 9. For Challenge #3, we tailor
DopCheck’s testing into a category-wise manner, and leverage a neural network-based optical
character recognition (OCR) technique [10] to handle the GUI-related DPCs.

We applyDopCheckwith the latest versions (10 to 13) of the Android Open Source Project (AOSP).
DopCheck recognizes 66 DPCs from their release documentation. Based on them, it generates
132 apps (in the form of apk �les) as test cases for 79 privacy-sensitive APIs, 35 permissions, and
6 attributes. By executing the test cases on real devices, DopCheck manages to identify 19 DPC
issues, among which, 12 are newly discovered in Android 13 and 6 in Android 10. According to the
latest market share of the tested devices, these issues may pose more than 35% Android users the
risk of unexpected privacy leakage.
Contributions. In summary, we make the following contributions in this paper.

• Understanding DPCs in Android OS. We conduct the �rst systematic study on evolution-
induced DPCs in Android OS. We propose an ontology to facilitate the understanding of
DPCs, and provide a characterization of DPCs to facilitate their testing.

• An automatic approach to explore DPC non-compliance issues. We design and imple-
ment DopCheck, an automatic solution that extracts DPCs from Android documentation,
e�ectively generates valid test code, and tailors testing strategies for DPCs in di�erent types
to minimize human interaction during testing. Our evaluation shows that DopCheck is
capable of identifying DPCs from Android documentation.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 119. Publication date: July 2024.

119:4 Chuan Yan, Mark Huasong Meng, Fuman Xie, Guangdong Bai

An App Triggering a DPC Issue

if (ContextCompat.checkSelfPermission(this, ACCESS_FINE_LOCATION)

!= PackageManager.PERMISSION_GRANTED) {

}

try {

TelephonyManager.getServiceState();

Log.e(getServiceState() can still be invoked without permission!)

} catch (Exception e) {

Log.e(It throws an Exception!)

}

If your app targets Android 10 or higher, apps must have

the ACCESS_FINE_LOCATION permission in order to use several

methods within the Wi-Fi, Wi-Fi Aware, or Bluetooth APIs.

The following sections list the affected classes and methods:

• getServiceState()

• ...

Some telephony, Bluetooth, Wi-Fi APIs require FINE

location permission.

A DPC in Android 10

TargetApi = 29

Logcat: getServiceState() can still be invoked without permission!

Fig. 1. An example of the DPC issue. Android 10’s documentation states that the API getServiceState()
requires a particular permission (le�), whereas an app that does not request the permission can still invoke it
without throwing any exception (right).

• Revealing the status quo of the privacy mechanism evolution. Our study presents
the landscape of the privacy mechanism evolution in the latest releases of Android OS. We
discuss the root causes of the DPC issues and share our insights on their prevention in future
releases. Our work should raise an alert to Android to strengthen its testing mechanism prior
to releasing new versions, and encourage the researchers in relevant �elds to initiate the
software quality assurance to prevent evolution-induced issues.

2 A MOTIVATING EXAMPLE AND APPROACH OVERVIEW

In this section, we use an example shown in Figure 1 to introduce the DPC issues in Android (Sec-
tion 2.1), and then present an overview of our approach (Section 2.2).

2.1 DPC Issues

Android OS has undergone continuous changes in its privacy mechanisms during its evolution,
aiming to strengthen user data protection and ensure compliance with regulations. These privacy
changes are documented in natural language and released as a part of OS release documentation. One
notable instance of such privacy enhancements can be found in Android 10 regarding Telephony,
Bluetooth, and Wi-Fi APIs. Android 10 describes this change as part of its documentation, as shown
in Figure 1 (left). It mandates that any app intending to use Wi-Fi, Wi-Fi Aware, or Bluetooth
APIs must request the ACCESS_FINE_LOCATION permission. However, enforcing such changes in the
actual OS implementations is challenging, given the complexity of Android OS. An inconsistency
between what is claimed in documentation and what the updated Android OS actually behaves may
exist. As shown in Figure 1 (right), in the absence of ACCESS_FINE_LOCATION, getServiceState()
can still be invoked without throwing any exception, contradicting the documentation. Such DPC

issues are the target problems that this work aims to explore.

2.2 Overview of DopCheck

DopCheck aims to 1) extract DPCs from o�cial Android documentation into ontologies, 2) generate
test cases as apps for each DPC, and 3) explore DPC issues by executing the generated test apps.
Its approach consists of two main phases as outlined in Figure 2. It initiates by extracting DPC
from Android documentation (Phase 1 in Figure 2). We de�ne nine types of DPC entities that
are essential for generating test cases, e.g., a test of invoking a privacy-sensitive API, and �ve
subsumptive relationships to connect those entities, e.g., the appropriate permissions for an API,
and the expected return value of an API. Based on this ontology,DopCheck extracts the information

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 119. Publication date: July 2024.

Investigating Documented Privacy Changes in Android OS 119:5

Android Privacy
Changes Documents

Generating
Test Cases

DPC
Issues

Phase 2 DPC Issue Detection

Phase 1 DPC Ontology Construction

Subsumptive
Relationships

Assertions

GUI Changes Testing

Permission Changes Testing

API Changes Testing

Attribute Changes Testing

Formulating Ontology

Entities

Subsumptive
Relationships

API—Permission—Exception,
API—Return, ...

API, Permission, Version, Attribute, ...Extracting DPCs

Test Cases
APKs

Fig. 2. An overview of the workflow of DopCheck

of each DPC using NLP techniques, and represents it in a uni�ed format to facilitate the test case
generation (Challenge #1). We detail this process in Section 3.

With the extracted ontologies, DopCheck utilizes an LLM (i.e., GPT-4 [54]) to generate test cases
(Phase 2 in Figure 2). This is to leverage the capability of generating syntactically and semantically
correct code that has been well demonstrated in previous studies [66, 72, 76] (Challenge #2). To
further enhance the quality of the generated test cases, DopCheck incorporates the concept of
in-context learning, which uses domain knowledge to guide the LLM in crafting DPC-speci�c
test cases. Regarding the test oracles, DopCheck devises speci�c assertions for each type of
DPCs (Challenge #3). They serve the role of checking whether the test cases trigger expected
behaviors or not. In those cases involving GUI changes, it uses machine learning-based Optical
Character Recognition (OCR) techniques to recognize whether sensitive data appears on the screen
during the execution of test cases. The entire phase of test case generation and execution for DPC
issue detection is detailed in Section 4.

In Section 3 and Section 4, we use an end-to-end running example in Figure 3 to show the detailed
steps in DopCheck.

3 DPC ONTOLOGY CONSTRUCTION

Given Android documents written in natural language, DopCheck identi�es DPCs (Section 3.1),
and recognizes the entities and subsumptive relationships to formulate DPC ontologies (Section 3.2)
that is essential for test case generation.

3.1 Extracting DPCs

3.1.1 Sources. DopCheck takes as input the Android documentation accompanying each new
OS version release. These documents are notably comprehensive and span more than 40 chapters
distributed across 12 webpages. They state the changes made in various domains and topics, as ex-
empli�ed in Figure 3 (left). To pinpoint privacy-related texts,DopCheck searches through the entire
corpus of documents, and includes the chapters whose titles or contents contain speci�c keywords
that we summarize from related literature [3, 16, 50] such as “privacy”, “security”, “privacy/security
changes”, “personal”, “identi�er/identi�able/ID”, “data protection”, “permission management” and
“user tracking”.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 119. Publication date: July 2024.

119:6 Chuan Yan, Mark Huasong Meng, Fuman Xie, Guangdong Bai

DPC Entities

Version: Android 10

Permission: READ_PRIVILEGED_PHONE_STATE

API: getSerial(), getImei(), getDeviceId(), getMeid(), getSimSerialNumber()

Exception: SecurityException

Privacy Changes in Android

Restriction on non-resettable device identifiers

Starting in Android 10, apps must have the

READ_PRIVILEGED_PHONE_STATE

privileged permission in order to access the device's non-resettable identifiers,

which include both IMEI and serial number.

Affected methods include the following:

Build

getSerial()

TelephonyManager

getImei()

getDeviceId()

getMeid()

getSimSerialNumber()

If your app doesn't have the permission and you try asking for information

about non-resettable identifiers anyway, the platform's response varies

based on target SDK version:

• If your app targets Android 10 or higher, a SecurityException occurs.

Subsumptive Relationship

Permission-API-Exception

Payload Token: getSerial() …

Validation Token:

READ_PRIVILEGED_PHONE_STATE,

SecurityException

getSerial() testing units

……

Test Case APKs

Testing

READ_PRIVILEGED_PHONE_STATE

SecurityException

DPC Categorization

Required Metadata: API

Optional Metadata: permission,

exception

Fig. 3. An end-to-end running example of a DPC on non-rese�able device identifiers (Android 10) to show
the steps of DopCheck

We conduct a manual con�rmation on the collection process using Android 10 documentation,
and a�rm that our keywords e�ectively encompass all chapters related to privacy changes. We
�nd that in Android 12 and 13, Android merges security and privacy changes lists, such that
security-related alterations such as vulnerability �xes and security patches are included in the
extracted chapters. Since they are in the general realm of security, we consider them as out of
the scope of our work. We thus exclude those chapters with terms like “security improvements”,
“vulnerability �xes”, and “system maintenance”.
Scope. Our document collection covers Android 10-13, the most recent four releases as of mid-2023,
considering their prevalence and our device availability. They can be considered representative,
as every single one of them reserves more than 10% of the market share. According to Google’s
statistics of the distribution of active Android devices by OS versions [6], Android 11 (released
in 2020) holds the largest market share (23.1%) as of August 2023. Android 13 (launched in 2022)
accounts for approximately 21%, followed by Android 12 (17.7%) and Android 10 (15.5%), which
were released in 2021 and 2019, respectively.

3.1.2 Extraction. Despite discrepancy across di�erent versions, the extracted privacy change
documents mostly follow the format of a subheading followed by the speci�c text describing the
privacy changes. For example, in Figure 3 (left), the “Restriction on non-resettable device identi�ers”
is a subheading of a privacy change, and the contents below provide details about a speci�c change.
With this observation, we utilize this format to extract DPCs. DopCheck �rst uses Python Beautiful
Soup library [1] to parse the HTML �les that contain the documents. It identi�es the subheadings
by locating the H3 tag with the class devsite-heading and aria-level attribute set to 3. From this
subheading, it continues parsing the HTML �le until it encounters the next H tag, and the content
within that tag is annotated as the speci�c text for the DPC (step ➊ in Figure 3).

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 119. Publication date: July 2024.

Investigating Documented Privacy Changes in Android OS 119:7

Table 1. Nine types of DPC Entities

Entity Category Entity Pattern/Archors Regex Semantics

Aggregate version [Tag:p] [Start: “Android”, End: 9-13] - Lower/Higher
application [Tag:p] [“app” + verb] - Hyperlink

Subject API [Tag:code] [End: ()] \b[a-zA-Z_0-9]+\(\) Hyperlink, Class, S/I1,
expected return value

Property permission [Tag:code] [All capital letters joined with _] ([A-Z]+_)+[A-Z]+ Hyperlink, P/N2

attribute [Tag:code] [<>] - Hyperlink, P/N
Result exception [Tag:code] [“throw”, “occur”, End: “Exception”] - Condition3

return [Tag:p] [“return”, End: “Noun/Num Entity”4] - API
�gure [Tag:�gure] - -
e�ect [Tag:p][In�nitive clause5, sentence contains API] - API

1 S: The API is accessed through a static method of the class. I: The API is accessed through an instance method of the
class.

2 P: The DPC describes positive of (needs) this permission/attribute. N: The DPC describes the negative of (unnecessary)
this permission/attribute.

3 Condition: condition under which an exception occurs.
4 Noun/Num Entity: Pair of nouns or number entity such as “empty list”, “-1”.
5 In�nitive clause: An in�nitive clause is an independent sentence, typically started by “to”, followed by a verb or verb
phrase.

3.2 Formulating Ontology

After extracting DPCs from Android documents, the next step is to construct DPC ontologies.
Named-entity recognition (NER) is a common technique to recognize entities from a sentence and
has been widely adopted in relevant research, such as PolicyLint [5], and Pico [70]. However, NER
relies on labeled data for training, making it not directly applicable in the context of DPCs due to
the limited size of the available corpus. Besides that, establishing the subsumptive relationships
among entities is necessary to formulate ontologies of DPC, but this is out of the capacity of
NER models. Alternatively, a recent study [4] resorts to the state-of-the-art LLMs for interpreting
texts in the Android domain. Nevertheless, the power of LLMs lies in capturing syntactic and
semantic information, rather than identifying new entities that never appear in its training datasets.
For example, our pilot study (detailed soon in Section 3.2.1) shows that GPT-4 [54], one of the
latest and most powerful LLMs, fails to recognize permissions introduced after the GPT-4 model
has been trained, e.g., POST_NOTIFICATIONS in Android 13. Some system broadcasts named in all
capital format, such as BOOT_COMPLETED and LOCKED_BOOT_COMPLETED, are mistakenly identi�ed as
permissions. For those reasons, we develop a domain-speci�c approach that constructs the DPC’s
ontologies by identifying entities and establishing subsumptive relationships.

3.2.1 Entities. Considering that DopCheck’s test cases mostly center around APIs, we formulate
the name of an API as the subject entity, and de�ne another eight DPC entities to construct the
context of an API invocation. This leads to overall nine entities of four categories listed in Table 1.
The information associated with these entities, shown in the last column, plays key roles in the
test case generation. For instance, following the API hyperlinks, DopCheck navigates to the
documentation of the API, where details to correctly invoke the API are contained, including its
class, arguments, methods, and version-speci�c information.
DopCheck uses a pattern-based manner to recognize entities, as listed in columns 3 and 4 in

Table 1. It starts with identifying the entities of the API and permission types, given that these
two types of entities have formats that can be easily recognized with regular expression. From
the texts in the same paragraph, it uses anchors to �nd the sentences that contain the other seven
entities. The entities of version, attribute and �gure can be recognized using anchors or tags in

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 119. Publication date: July 2024.

119:8 Chuan Yan, Mark Huasong Meng, Fuman Xie, Guangdong Bai

Table 2. The performance of DopCheck and LLM in extracting entities from DPCs

Aggregate Subject Property Result Overall

Groundtruth 17 38 19 11 85
)% �% �#)% �% �#)% �% �#)% �% �# %A428B8>= '420;;

LLM 15 1 2 36 3 2 17 4 2 9 1 2 89.53% 90.59%
DopCheck 16 0 1 37 0 1 19 1 0 10 1 1 97.62% 96.47%

†
)% : True Positive, �% : False Positive, �# : False Negative.

HTML. By locating the API and identifying in�nitive clauses in its sentences, we determine the
e�ect entity. DopCheck leverages Spacy [59], an open-source NLP library for tokenization and
entity recognition, to identify and extract application, exception and return entities by detecting
nouns or noun pairs in proximity to the keywords “app”, “application”, “throw”, “occur”, and “return”.
Step ➋ in Figure 3 presents the entities extracted, including version, API, permission, and exception.

The entities are organized into four categories, as shown in the �rst column in Table 1, to re�ect
the rationale for de�ning these entities. Besides the subject entity, the version and application

entities are considered as aggregate entities as each DPC declares the target version and constraints
of the entire app. The permission and attribute entities are categorized as property entities because
they describe the setting to invoke an API. The exception, return, e�ect, and �gure are treated as
result entities as they indicate the response of the API calls.

We randomly select ten DPCs and manually labeled all entities within them as the ground truth.
We then test DopCheck on the ground truth to benchmark its entity identi�cation, and it achieves
a precision of 97.62%. As a comparison, we invoke the LLM to complete the same task, by feeding
each DPC text into it and requesting it to identify the entities within the text. The results of entity
extraction by LLMs are listed in Table 2, and we also release the interaction with LLMs for this
tasks in DopCheck repository [2].

Access to device location in the background requires

permission

Unlike the ACCESS_FINE_LOCATION and ACCESS_COARSE_LOCATION

permissions, the ACCESS_BACKGROUND_LOCATION permission only

affects an app's access to location when it runs in the background.

If your app creates and monitors geofences and targets Android 10 or higher, you
must declare the ACCESS_BACKGROUND_LOCATION permission.

Fig. 4. An example indicating that multiple adja-
cent permission entities do not formulate a valid
relationship

3.2.2 Subsumptive Relationships. After DopCheck
has recognized entities, its next objective is to dis-
cover subsumptive relationships that establish con-
nections among entities, and thereby facilitate the
test case generation process. For example, an API–

permission relationship depicts the proper permis-
sions needed to invoke an API in the test app. Be-
sides that, we have also de�ned three subsumptive
relationships that are based on the connection be-
tween the subject entity API and other entity cate-
gories, i.e., API–permission–exception, API–e�ect and
API–return, which are tailored to the requirement
of testing API calls. In addition, we �nd some DPCs concern permission requests for certain app
functionalities rather than speci�c APIs (see Figure 4), and therefore we de�ne another relationship
named application–permission All these �ve relationships are listed in Table 3.
Aggregate entities are not explicitly included in any relationship, as they are implicit in all

relationships. Each relationship can assume either a conditional or unconditional nature (column
2). For example, “if your app targets Android 10 or higher, the [API] needs [permission]” presents a
conditional API–permission relationship. Following this, we depict the Hearst Patterns [35] of all
relationships in Table 3.
To infer these relationships, a naive way is to group the entities that appear within the same

sentence or paragraph. However, the adjacency of entities in the same or the neighboring sentences

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 119. Publication date: July 2024.

Investigating Documented Privacy Changes in Android OS 119:9

Table 3. A list of subsumptive relationships

Subsumptive

Relationships

Condition

Scenario

Pattern Payload

Tokens1
Validation

Tokens2
Example

Application
-Permission

Conditional <Temporal Conjunction ⌢

Conditional Clause, must ⌢

Permission>

Conditional
Clause

Permission If your app creates and monitors ge-
ofences and targets Android 10 (API
level 29) or higher, you must declare the
ACCESS_BACKGROUND_LOCATION permission.

Unconditional - - - -

API-Permission Conditional <Temporal Conjunction ⌢

Permission ⌢API>
API
Conditional
Clause

Permission If your app targets Android 13 or higher, you
must declare the NEARBY_WIFI_DEVICES per-
mission to call publish(), attach(), ...

Unconditional <To ⌢ API, ⌢ Permission> API Permission To read number from onCallStateChanged(),
you need the READ_CALL_LOG permission
only.

API-Permission
-Exception

Conditional <Temporal Conjunction ⌢

Permission ⌢ API ⌢ Excep-
tion>

API
Permission

Exception Refer to the example in Figure 3.

Unconditional - - - -

API-E�ect Conditional <Temporal Conjunction ⌢

API ⌢ Conditional Clause, ⌢

E�ect>

API
Conditional
Clause

E�ect When an app calls getPrimaryClip() to
access clip data from a di�erent app for the
�rst time, a toast message noti�es the user of
this clipboard access.

Unconditional <To ⌢ E�ect ⌢ API > API E�ect To determine the permission group
into which the system has placed
a platform-de�ned permission, call
getGroupOfPlatformPermission().

API-Return Conditional <Temporal Conjunction ⌢

Conditional Clause,⌢ API ⌢

return ⌢ Value>

API
Conditional
Clause

Value If your app targets Android 9 (API level 28) or
lower, getSerial() returns null.

Unconditional <API ⌢ return ⌢ Value> API Value Apps targeting Android 10 or higher cannot en-
able or disable Wi-Fi. The setWifiEnabled()
method always returns false.

1 Payload tokens are the sub-sentence that is used to construct the test app.
2 Validation tokens are the sub-sentence that is used to construct assertions.

If your app targets Android 10 or higher, then the following methods don't return useful data:

Each network operation that returns a boolean value

removeNetwork(), reassociate(), enableNetwork(), disableNetwork(),

reconnect(), and disconnect()---- always return false.

Target Version: Android 10 or higher

removeNetwork()

reassociate()

enableNetwork()

disableNetwork()

reconnect()

disconnect()

Falsereturn

Fig. 5. An example of the API–return subsumptive relationship

does not necessarily imply a meaningful relationship among them. Taking the DPC Access to

device location in the background requires permission in Figure 4 as an example, the two entities
ACCESS_FINE_LOCATION and ACCESS_COARSE_LOCATION are intendedmerely for comparison purpose,
and ACCESS_BACKGROUND_LOCATION is the sole permission required for an app to create and monitor
geofences. Therefore, DopCheck uses a semantics-aware method to construct relationships (step
➌ in Figure 3).

The key components in subsumptive relationships are the payload tokens and validation tokens,
which are informative for the test case generation. Both of them are used as the key information in
our test generation (to discuss in Section 4.1). The former speci�es the app settings and values of

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 119. Publication date: July 2024.

119:10 Chuan Yan, Mark Huasong Meng, Fuman Xie, Guangdong Bai

the entities, and the latter de�nes the assertions to indicate whether a test behaves as expected or
not (i.e., the testing oracle). DopCheck uses the en_core_web_sm, an NLP model of Spacy [59] to
identify these two components. For the conditional patterns, Spacy identi�es those conditional
and temporal conjunctions, e.g., if and when, and marks their dep attributes (i.e., the syntactic
dependency). Using them as anchors, DopCheck can obtain the two components from the sub-
sentences. Figure 5 presents an example of the API–return relationship, where payload tokens, APIs
and expected return values are included.
During the above recognition procedure, DopCheck may encounter complex sentences due to

the diverse formatting and descriptions within the documents. To facilitate Spacy’s identi�cation,
DopCheck processes two speci�c cases as follows.
Multiple Condition Statement. The documentation often includes nested conditional rela-

tionships such as if A: {if B, then C; if D, then E}. Figure 3 shows an example of this format (“If
your app does not... If your app targets...”). DopCheck merges these conditions to facilitate Spacy’s
recognition, combining � and � into � & �, � and � into � & � , i.e., if A & B, then C; if A & D,

then E.
Special Pronouns. Some nouns may be used to refer back to previously mentioned permissions

or APIs. For example, the sentence “If your app does not have the permission and ...” in Figure 3, the
pronoun “permission” refers to READ_PRIVILEGED_PHONE_STATE mentioned earlier. We use Spacy to
identify pronouns for permissions and APIs in DPC text and then replace them.

4 DPC ISSUE DETECTION

With the extracted ontologies, DopCheck generates test cases to test the OS implementations for
DPC issues. This involves generating valid API invocations (Section 4.1) and test assertions (Sec-
tion 4.2).

4.1 Generating Test Cases

DopCheck initiates its test case generation by creating an empty app, which includes the manifest
�le, an empty Activity, a basic GUI page with a button linked to an empty handler function,
and the onCreate() method. The test code generated is then inserted into this empty app. For
example, changes regarding the API are placed inside the onCreate() method, changes requiring
user interaction are incorporated into the button’s onClick handler, and the permission requests
are added to the manifest �le. The main challenge it must address is to generate valid code for
invoking APIs. Android API invocations are characterized by parameter variations, requirements,
and usage patterns, such as the need for single or multiple instances and the requirement for
speci�c callback functions to be passed as arguments. It is impractical to create invocations for
each DPC manually. For that reason, we leverage LLMs to overcome the practicability challenge
and ensure the generated test cases are valid and contextually appropriate. Speci�cally, we adopt
GPT-4 [54], a state-of-the-art language model built on the transformer architecture. GPT-4 has
extensive exposure to diverse training data, enabling it to generate syntactically accurate code.
Furthermore, DopCheck harnesses the concept of in-context learning [55], which allows us to guide
the model in producing results that align with our speci�c requirements in a few-shot. In this form
of learning, three key inputs are considered.

• System: The system input sets the model’s behavior, role, and context, giving a general
direction, tone, and style to the conversation. It assists the model in better understanding the
user’s intent, guiding the conversation, or providing contextual information.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 119. Publication date: July 2024.

Investigating Documented Privacy Changes in Android OS 119:11

Table 4. Examples of Constructing LLM prompts with payload tokens and validation tokens

Payload Token LLM User Prompt

Conditional ClauseWrite an easy Android app targeting [version], requiring [Conditional Clause].
Give me an easy Android app example of [Conditional Clause], which targeting [version]
Provide a simple Android app illustration for [Conditional Clause], designed for [version].
Present a beginner-friendly Android app instance demonstrates [Conditional Clause] and targeting
[version].

API Write an example of invoking [API], targeting [version].
Provide an instance of invoking [API] for [version].
Demonstrate how to use [API] for [version].
Show how to make a call to [API] with a target of [version].

API, Permission Write two examples of calls to [API], one with [Permission] and the other without.
Create two scenario of calls to [API], one with [Permission] and the other without.

DPC Context Provide an example of [DPC Context].

Android 8, 9
Privacy
Changes

Entities
Version: Android 9
API: onCallStateChanged()
Permission: READ_CALL_LOG

Message
System: You are a senior Android development engineer.

User: Give me two examples of call to CallStateChanged(),
one has READ_CALL_LOG, the other does not have.

Assistant: Manually write the CallStateChanged() test cases.

In-context Learning

Message
System: You are a senior Android development
engineer.

User: Give me two examples of call to
attach(), one has NEARBY_WIFI_DEVICES, the
other does not have.

Android
10, 11, 12, 13

Privacy
Changes

Subsumptive
Relationship

Message
Assistant: The attach() test cases.

DPC
"...To read number from

onCallStateChanged(), you
need the READ_CALL_LOG

permission only."

OpenAI
GPT4

Output

Input

Learning

Subsumptive Relationships
Subsumptive Relationship: API-Permission (Unconditional)
Payload Token: To read number from on CallStateChanged().
Validation Token: You need the READ_CALL_LOG permission only.

Fig. 6. An example of test case generation with in-context learning

• User: The user’s role is to pose questions, request information, provide input, or instruct the
model to perform speci�c tasks. The user’s input can be in the form of questions, commands,
statements, or any information that requires a response from the model.

• Assistant: The assistant can see expectations for the model’s responses. By con�guring the
assistant, we convey to the model the desired outcome we are aiming for, allowing us to
generate test cases that align with our expectations.

DopCheck �rst sets the system as “You are a senior Android development engineer”, to guide
GPT-4 to respond with Android domain-speci�c answers. A recent study [67] demonstrates that
the learning ability of LLMs improves with the increase in the number of in-context learning
examples. We thus use the maximal in-context learning samples allowed within the token limit of
GPT-4 (approximately 5 DPCs). In particular, DopCheck uses the subsumptive relationships of �ve
DPCs from Android 8 and Android 9 and passes their payload tokens as user inputs for GPT-4, as
shown in Table 4. We manually write corresponding test cases as assistant inputs to enhance its
capability for the in-context training. Figure 6 illustrates an example of our in-context learning
process with GPT-4 (step ➍ in Figure 3). After the in-context training, prompts constructed from
the ontologies (shown in Table 4) are fed into GPT-4. To demonstrate the quality of the generated
test cases, Figure 7 presents an example which assesses whether a SecurityException is thrown
when the attach() API does not have the NEARBY_WIFI_DEVICE permission.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 119. Publication date: July 2024.

119:12 Chuan Yan, Mark Huasong Meng, Fuman Xie, Guangdong Bai

Table 5. Four categories of DPCs to facilitate assertion construction

DPC Category Entity Criteria Testing Mode

Required Entities1 Optional Entities2

API changes API permission, attribute, exception, return, e�ect Return value validation
Permission changes permission API, attribute, exception, return GUI/Prompt validation
GUI changes �gure API, exception, return GUI validation
Attribute changes attribute API permission, , exception, return Property testing

1 Required Entities: Entities that must be included to be classi�ed into this category.
2 Optional Entities: Entities that may be included to be classi�ed into this category.

Initialize the APK

Test case for attach()

generated by GPT-4

(Section 4.1)

APK Testing (Section 4.3)

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main)

String permission = Manifest.permission.NEARBY_WIFI_DEVICES;

if (ContextCompat.checkSelfPermission(this, permission) !=

PackageManager.PERMISSION_GRANTED) {

try {

WifiAwareManager mWifiAwareManager = (WifiAwareManager);

this.getSystemService(Context.WIFI_AWARE_SERVICE);

WifiAwareManager.attach(new AttachCallback() {

public void onAttached(WifiAwareSession session) {

wifiAwareSession = session;

}

public void onAttachFailed() {}

}, null);

} catch (Exception e){

String es = e.getClass().toString();

assert es.equals(“class java.lang.SecurityException”):

“No SecurityException thrown”;

}

}

}

Fig. 7. A test case of attach() generated by GPT-4

4.2 Assertions

During the execution of the test cases, DopCheck has to check whether the invocation of the
APIs leads to expected behaviors or not (step ➏ in Figure 3), for example, to check whether the
return value matches the descriptions in the document, or to check whether an expected security
exception is thrown. To de�ne assertions for this purpose, we take a category-wise strategy (step
➎ in Figure 3). Table 5 de�nes four categories of DPCs and our categorization criteria. Below we
brief the designed assertions for each category.
API changes. For the category of API changes, DopCheck compares the actual return values

obtained from the test case with the validation token in their subsumptive relationship. The test
passes if they are found matched. Otherwise, a DPC issue is reported.
Permission changes. For the category of permission changes, DopCheck applies two testing

methods. First, after the test case dynamically requests the permission, DopCheck conducts a
checking whether the GUI prompts the users for authorization, by ActivityManager. Figure 8 shows
an example when testing two permissions ACCESS_COARSE_LOCATION and ACCESS_FINE_LOCATION

on Android 12. The other method is designed speci�cally for the Permission DPCs that have an
API entity. DopCheck tests whether the app can function properly by altering the permissions in
the manifest �le. For instance, if the subsumptive relationship is in the form of Permission-API-
Exception (see Table 3), we check whether the system throws an exception when the required
permission is missing in the manifest �le.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 119. Publication date: July 2024.

Investigating Documented Privacy Changes in Android OS 119:13

Fig. 8. Dynamically requesting
a dangerous permission

DOPCHECK

Your one-solution to scan

documented privacy

changes (DPCs) issues for

Android OS.

If the testing is not

automatically launched.

Press the button below to

start the testing.

Start

DOPCHECK

Your one-solution to scan

documented privacy

changes (DPCs) issues for

Android OS.

If the testing is not

automatically launched.

Press the button below to

start the testing.

Start

Fig. 9. An example of the GUI DPC – “Hide Sensitive Content From
Clipboard in Android 13”. Clipboard contents labeled as sensitive (le�)
and non-sensitive (right) are shown, respectively.

GUI changes. For the category of GUI changes, DopCheck lets the test case display the value
it obtains on the screen, takes screenshots, and utilizes PaddleOCR [10] to recognize whether
sensitive data appears on the screenshots.
A�ribute changes. For the category of attribute changes, DopCheck tests whether adding or

removing attributes as indicated in the documentation causes any exceptions.
We remark that not all DPCs can be classi�ed into the four aforementioned categories and we

call those DPCs miscellaneous changes. We list all the miscellaneous DPCs identi�ed during our
categorization in Section 5.1.

5 EVALUATION AND LANDSCAPE

We apply DopCheck on Android versions 10 to 13, to understand the landscape of DPC issues in
the latest Android implementations. Two Android phones, i.e., Pixel 3a (compatible with Android
9 to Android 12) and Pixel 6a (compatible with Android 12 and 13), are used for our experiment.
We focus on Android AOSP versions, as they are typically the �rst batch to receive the o�cial
updates and security patches, which is crucial for testing new features. As DopCheck is designed
to identify DPCs and explore DPC issues from the Android implementation, our evaluation aims to
answer the following three research questions (RQs).
RQ1. What is DopCheck’s performance in identifying DPCs? Is it able to accurately extract
ontologies from each DPC?
RQ2. How e�ective is DopCheck in generating valid test cases?
RQ3. Based on DopCheck’s �ndings, which DPCs exhibit discrepancies in the actual Android
implementations and potentially pose privacy and security concerns for both app developers and
the Android team?

5.1 RQ1: Ontology Extraction and Real-World DPCs Categorization

DopCheck identi�es 66 DPCs across the four Android versions, involving 79 APIs, 35 permissions,
6 attributes and 12 e�ect entities. To validate DopCheck’s performance, we invite three members
from our institute to conduct an independent manual assessment. All of them have experience in
Android app analysis and development, and one of them also possesses a legal background and
has experience of drafting the privacy policy document for an app. They all have no knowledge of
DopCheck before the con�rmation process. They are provided with the introduction of entities
with examples to interpret the tasks. We then randomly select 11 documentation excerpts from
Android 10-13, accounting for 10% of the documentation in each version, for them to manually
identify DPCs and entities. After that, they have a discussion on the identi�ed items to reach

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 119. Publication date: July 2024.

119:14 Chuan Yan, Mark Huasong Meng, Fuman Xie, Guangdong Bai

Android 10 Android 11 Android 12 Android 13

Fig. 10. Distribution of DPC categories for each Android version

an agreement. This process leads to 31 DPCs and 62 entities being recognized from the given
documents. Among them, 31 DPCs and 59 entities are identi�ed by DopCheck. The missing two
entities include one API entity and one attribute entity, with the reason being that DopCheck failed
to locate the anchor for the entity, e.g., the MediaProjection API does not end with “()” in a DPC.

We categorize the identi�ed DPCs based on the criteria listed in Table 5. As shown in Figure 10,
for each Android version, it is apparent that the most alterations occur within permissions (8, 5, 5,
and 7 DPCs in Android version 10, 11, 12, and 13, respectively). This prominence is mainly due to
the fact that permission control is a pivotal strategy for safeguarding user privacy. Furthermore,
permissions standardize the procedure by which developers access designated user data, guaran-
teeing that applications can solely access sensitive information under reasonable and indispensable
conditions [30]. We also observe that there are signi�cant privacy changes for Android 10 and
Android 12 (15 and 6 unique DPCs, respectively)1. The di�erence lies in Android 10 focusing on up-
dates to APIs (9 DPCs) and permissions (8 DPCs), while Android 12 has predominantly emphasized
privacy enhancements in the GUI changes (6 DPCs). In addition, we �nd three DPCs simultaneously
involve both GUI and permissions in both Android versions 12 and 13. This re�ects that in recent
years, Android’s changes to the GUI are not only stemming from the Human-Computer Interaction
(HCI) enhancement, but also encompassing a focus on permission-related aspects [51]. For instance,
in Android 12, a change allows apps to request only coarse-grained user location instead of precise
latitude and longitude coordinates [25]. This shift has established a precedent where users can
choose the precision level of the information they are comfortable sharing, consequently enhancing
compliance with the principles of transparency and user right in regulations like GDPR.
Table 6 presents the DPCs that do not �t into any category, which we classify as miscellaneous

DPCs. These DPCs are often related to users’ behaviors, preferences, or time dimensions, so even
if GPT-4 can generate valid test apps, it can still be challenging to conduct accurate testing. For
instance, Android 10 removed the contact a�nity information, which implies that the platform no
longer sorts search results for contacts based on interaction frequency. As another example, if a
user does not use the app for an extended period, Android 11 will reset all permissions for this app,
and the user needs to reauthorize all permissions to the app.

5.2 RQ2: Test Case Generation

After excluding the 6 miscellaneous DPCs, DopCheckmanages to generate 132 test cases for 54 out
of the remaining 60 DPCs. The generated test cases consist of 79 API testing units, 35 permission
testing units, 12 UI testing units, and 6 attribute testing units. Our test case generation results are
summarized in Table 7.
1Recall that there is overlap among categories (see Table 5).

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 119. Publication date: July 2024.

Investigating Documented Privacy Changes in Android OS 119:15

Table 6. List of six miscellaneous DPCs

Android Version DPC Title Reason

Android 10 Removal of contacts a�nity User preferences and behavior
MAC address randomization Enterprise use case
Restrictions on starting activities from the background System-level changes

Android 11 Permissions auto-reset Time dimension

Android 12 Motion sensors are rate-limited User preferences and behavior
App hibernation Time dimension

Table 7. Test case generation results

DPC
Category

Subcategory
(if any)

Generated
Test Cases

Executable
Valid Test

Cases
Non-executable

Test Cases
O�-target
Test Cases

Success
Rate

Time
Cost (s)

API Static Method 2 2 0 0 100.00% 26.91
Abstract Method 6 6 0 0 100.00% 25.37
Single Instance Method 35 30 4 1 85.71% 28.97
Multi-Instance Method 36 27 5 4 75.00% 32.36

Permission Dangerous Permission 27 23 3 1 85.19% 23.43
Signature Permission 6 4 1 1 66.67% 22.38
Normal Permission 2 2 0 0 100.00% 21.91

UI – 12 10 2 0 83.33% 18.71
Attribute – 6 3 2 1 50.00% 20.03
Total 132 107 17 8 82.88% 24.45

E�cacy of test case generation. To con�rm the validity of the generated test cases, we manually
inspect all 132 test cases, checking whether they correctly hit the intended constraints of entities
and relationships. There are 8 test cases that invoke incorrect APIs (referred to as o�-target cases),
mainly due to Java method overloading, which allows multiple APIs of the same name to be
de�ned in the same class. We then execute the remaining test cases, and �nd that 107 out of all
132 (82.88%) test cases are executable. The 17 non-executable test cases are due to erroneous API
invocation generated by the LLM, such as missing parameters and erroneous object instantiation.
In consideration of testing coverage, we manually �x all test cases to make them syntactically and
semantically correct.
Time cost. On average, generating a test case takes around 25 seconds, as shown in Table 7. The
loading and execution time for each case is within 10 seconds on the real device. Overall, the API
category takes longer than others, mainly because DPCs in this category often involve more entities
and complex subsumptive relationships. That leads to a higher demand with regard to prompt
tokens, and as a result, the LLM may need a longer duration to produce a response.
Test cases in the API change category. Within the API change category, DopCheck can success-
fully invoke test units for all APIs that are de�ned as static methods and abstract methods. This is
because these methods typically have relatively simple parameter structures, such as getSerial(),
a static method from the Build class, which can be invoked without any parameters.
For APIs that are single instance non-static methods, DopCheck can generate valid invokable

test units for 85.71% of them. These methods typically require constructing an instance, such as
TelephonyManager, and then the API is invoked through the instance. The failures in generat-
ing test cases for APIs of this type (i.e., the getAvailableNetworks() in TelephonyManager class)
are due to missing details in Android documentation. Although Android 10 privacy change doc-
ument clearly states that getAvailableNetworks() belongs to the TelephonyManager, we could

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 119. Publication date: July 2024.

119:16 Chuan Yan, Mark Huasong Meng, Fuman Xie, Guangdong Bai

not �nd any explanation for the getAvailableNetworks() in the o�cial documentation of the
TelephonyManager [33], neither from the API library of Android 10.

For APIs that are multi-instance non-static methods, DopCheck only manages to generate valid
test units for 75% of them. This is because the multi-instance methods require more than one
instance to be invokable. For example, in the WifiManager class, an API named updateNetwork()

takes a WifiConfiguration instance as a parameter. For that reason, DopCheck needs to construct
both WifiManager and WifiConfiguration instances to call updateNetwork(). Nonetheless, our
adopted LLM fails to identify semantic connections in generating complex multi-instance test units.
Test cases in the permission change category. The majority of permissions involved in DPCs
within this category are at a dangerous level (77.14%). We observe that some of the failed test
cases are due to speci�c permission combinations that require interactions to trigger or some new
permissions that GPT-4 cannot correctly identify. Among the 29 executable test cases, DopCheck
discovers 12 APIs that can be invoked without being granted the requested NEARBY_WIFI_DEVICE

permission, and 4 APIs that can be invoked without requesting ACCESS_FINE_LOCATION. We discuss
more details about our �ndings in Section 5.3.
Considering that permission group may contain issues of permission violations [26], we also

screen each DPC to check whether they involve any group permissions. Two such permissions are
found, namely “Request location access at runtime” in Android 12 [20] (involving ACCESS_COARSE_

LOCATION and ACCESS_FINE_LOCATION) and “Granular media permissions” in Android 13 [23] (in-
volving READ_MEDIA_IMAGES and READ_MEDIA_VIDEO). We then update relevant test cases to assess
these two groups. Taking the former as an example, we �rst grant the ACCESS_COARSE_LOCATION
permission in the old version (A) of the test app, and then grant ACCESS_FINE_LOCATION in the
updated version (B). The results show that in version B, the system still prompts for �ne location
permission, indicating Android has �xed the recently reported permission issue [11].
Test cases in the GUI and attribute categories. DPCs within the GUI change category predomi-
nantly focus on the presentation of user-sensitive data. For instance, Android 13 allows apps to
copy sensitive content to the clipboard and provides the option to add �ags to prevent sensitive
content from appearing in content previews [26]. Out of the 12 GUI-related DPC test cases, 10 of
them are executable (83.33%), causing GUI-related DPCs do not involve complex API invocations
or permission requests.

For the 6 attribute DPCs, the LLM can only generate 3 test cases that compile successfully due to
the personalization of attribute values. Take one DPC in Android 12 titled “Known signers permission

protection �ag” as an example, the knownCerts attribute mentioned in that DPC requests actual
digital certi�cates for testing purposes. However, the LLM adopted by DopCheck cannot generate
a certi�cate on its own. As a result, DopCheck fails to generate a valid test case for this DPC. We
discuss the limitation of this aspect in Section 6.2.

5.3 RQ3: DPC Issues Landscape

Through executing the test apps, DopCheck manages to �nd 19 independent DPC issues from
three DPCs, among which two DPCs are on Android 10 and one on Android 13. Besides that, there
are a total of 18 APIs and 3 permissions involved in our �ndings. Among the 19 DPC issues, one
issue replicates a known vulnerability of Android 10, and the remaining 18 issues are discovered by
us for the �rst time. We present more details of our �ndings in Table 8.
First, DopCheck �nds that the API getIccid() still returns the actual ICCID in Android 10,

which contradicts Android’s privacy policy stipulating that the third-party apps’ access to the
ICCID is prohibited [18]. That issue was �rst unveiled in a recent study [50].

The second DPC in our �ndings is titled “Some telephony, Bluetooth, Wi-Fi APIs require FINE loca-

tion permission”. It stipulates that the invocation of certain APIs requests the ACCESS_FINE_LOCATION

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 119. Publication date: July 2024.

Investigating Documented Privacy Changes in Android OS 119:17

Table 8. Inconsistency between DPCs and actual Android OS behavior

DPC Title API Permission Version Status

Restriction on non-resettable
device identi�ers

geticcid() READ_PRIVILEGED_PHONE_STATE 10 Replicate

Some telephony, Bluetooth,
Wi-Fi APIs require FINE
location permission

getAvailableNetworks() - 10 New

startScan()[W] ACCESS_FINE_LOCATION 10 New

startScan()[B] ACCESS_FINE_LOCATION 10 New

startDiscovery() ACCESS_FINE_LOCATION 10 New

startLeScan() ACCESS_FINE_LOCATION 10 New

getServiceState() ACCESS_FINE_LOCATION 10 New

New runtime permission for
nearby Wi-Fi devices

attach() NEARBY_WIFI_DEVICES 13 New

publish() NEARBY_WIFI_DEVICES 13 New

subscribe() NEARBY_WIFI_DEVICES 13 New

addLocalService() NEARBY_WIFI_DEVICES 13 New

connect() NEARBY_WIFI_DEVICES 13 New

createGroup() NEARBY_WIFI_DEVICES 13 New

discoverPeers() NEARBY_WIFI_DEVICES 13 New

requestDeviceInfo() NEARBY_WIFI_DEVICES 13 New

requestGroupInfo() NEARBY_WIFI_DEVICES 13 New

discoverServices() NEARBY_WIFI_DEVICES 13 New

requestPeers() NEARBY_WIFI_DEVICES 13 New

startScan()[W] ACCESS_FINE_LOCATION 13 New

[W] : The API is de�ned in class WifiManager.
[B] : The API is de�ned in class BluetoothLeScanner.

permission since Android 10. However, our testing discovered that one API listed in that DPC is not
included in Android API for third-party app developers, and another �ve APIs can still be invoked
without the aforementioned permission. We later manually con�rmed these six DPC issues after
checking the AOSP’s source code. Notably, one of the involved APIs, i.e., startScan() of the class
WifiManager, was again mentioned to request the ACCESS_FINE_LOCATION permission three years
later in another DPC in Android 13. Unfortunately, this DPC issue still remains in the Android 13
release, making it a problem open for more than four years until detected by our work.

The last DPC issue is about the NEARBY_WIFI_DEVICES permission, which is primarily responsible
for connecting to nearby devices via Wi-Fi. DopCheck �nds a DPC titled “New runtime permission

for nearby Wi-Fi devices” mandates that an app must declare the use of the NEARBY_WIFI_DEVICES
for accessing 13 relevant APIs if its developer sets the build target to Android 13 or higher. However,
among the 13 APIs, 11 APIs (see in Table 8) can still be successfully invoked without being granted
the aforementioned permission. Our manual inspection of the AOSP source code has con�rmed
our �ndings. At the same time, from the AOSP implementation, we �nd that the source code
level documentation of the 13 problematic APIs (i.e., the Javadoc located before the actual API
source code) has clearly stated that the NEARBY_WIFI_DEVICES permission is required, but unfor-
tunately the immediately-following de�nitions of these APIs lack the annotations requesting the
NEARBY_WIFI_DEVICES permission.
Responsible disclosure and ethical consideration. We have reported all our newly discovered
DPC issues to Google via the Issue Tracker Platform, and actively assist in the �x process. Fixing
DPC issues turns out to be an unexpectedly non-trivial process. Take the API named attach,
i.e., the third DPC in Table 8, as an example. In fact, there are two APIs named attach in the
class WifiAwareManager. According to the documentation of this class, both APIs can be used
to initialize the Wi-Fi Aware service. DopCheck manages to �nd that one of the APIs, namely

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 119. Publication date: July 2024.

119:18 Chuan Yan, Mark Huasong Meng, Fuman Xie, Guangdong Bai

Original Documentation of Android 13
(Prior to our reporting to Google)

Updated Documentation of Android 13 as of June 2023
(After our reporting to Google)

Fig. 11. Change in Android documentation before and a�er our reporting

attach(AttachCallback, Handler), does not have the permission NEARBY_WIFI_DEVICES included
in its RequiresPermission annotation. Therefore, it can be invoked even if the test apps are not
granted that permission. In contrast, the annotation for the other API, i.e., attach(AttachCallback,
IdentityChangedListener, Handler) is correct in AOSP. In other words, an app must have the
NEARBY_WIFI_DEVICES permission to invoke the API with three parameters.
An ideal �xation is to add the missed permission to the two-parameter version of the attach

API, making the two APIs being controlled consistently, since this is a case of Java method
overloading. However, the Android team updated the privacy change document by replacing
the general name of the involved API, i.e., attach(), with the speci�c three-parameters one,
namely attach(AttachCallback, IdentityChangedListener, Handler), without changing the
implementation. This change is illustrated in Figure 11. We speculate that the code remains un-
changed because of compatibility requirement, but remark that this �xation may not be a secure
one, as it just hides the buggy API from the developer documentation. We are still in discussion
with the Android team through the issue tracker system.

6 DISCUSSIONS

In this section, we �rst propose our recommendations to di�erent parties in the Android ecosystem
who may be involved by DPC issues (Section 6.1). We also discuss the limitations of our work. In
the end, we outlook the future landscape of studying evolution-induced DPC issues in Android OS.

6.1 Recommendations

Android. The DPCs that Android has clear entities speci�ed in its documentation could have been
validated through a rigorous assurance mechanism. For such DPCs, Android should establish a
regression testing process to check the consistency between documentation and code, ensuring
all the implementations comply with the high-level requirements and policies stated in the doc-
umentation. Android should pay special attention to the interfaces that lead to the same data or
service as the documented APIs, and ensure that the access points to the same data or service (see
the attach example in Section 5.3) should be enforced with consistent permissions. Regarding the
�xation of DPC issues, their root causes should be pinpointed and addressed, rather than opting
for merely modifying the documents with undesired compliance.
App developers. Developers should strictly adhere to the guidelines and requirements outlined in
the Android documentation while developing their applications. If any inconsistencies between
the documentation and the actual code behavior are discovered, they should promptly report it
to Android to ensure the legality and compliance of their applications. Additionally, developers
should stay vigilant about the release of each new Android version, paying close attention to the

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 119. Publication date: July 2024.

Investigating Documented Privacy Changes in Android OS 119:19

usage and permission requirements of updated APIs. This would ensure that their applications
remain compatible with the regulations and requirements of multiple Android versions.

6.2 Limitations

To the best of our knowledge, DopCheck is the �rst work that conducts a systematic analysis on
DPC issues. However, our work still carries several limitations that could be addressed in future
work. First, due to our scope of privacy changes, the ontologies we have proposed (Table 1 and
Table 3) still have some omissions, such as the presence of tabular information in a few DPCs. Our
ontology can be further extended to capture rich relationships to comprehensively pro�le privacy
changes, and ideally, general changes. Such an ontology can facilitate change assurance. Second,
DopCheck has not considered some speci�c changes (Table 6), e.g., the “app hibernation” which
revokes the app’s granted permissions if it is not used for an extended period, and the “motion sensors

are rate-limited” which involves extensive user interactions. Third, this work primarily investigates
the consistency between updates to Android documentation and their implementation, and we
thus only assess APIs and permissions explicitly detailed in the documentation. The invocations of
interfaces or permissions made in undocumented ways, e.g., Java re�ection, can be considered in
future work. Finally, although LLM can generate corresponding test cases for most DPCs, some
still fail to invoke the tested APIs e�ectively (see Table 7). This includes situations where the
API’s owning class cannot be instantiated correctly, or attribute assignments are incorrect. Further
�ne-tuning of the LLM model with Android domain knowledge may enhance test case generation.

6.3 DopCheck’s Applicability to Upcoming Android Versions

From Android 10 to Android 13, we notice that there have been slight formatting changes in
the privacy change documentation with each update. For instance, Android 12 and Android 13
combined security and privacy changes into a single document. As of the submission of this paper
(September 2023), Android has published the change list for Android 14 [29], although its o�cial
release has yet to come. In Android 14, privacy changes are more distributed throughout the entire
document of the OS release. Take the DPC “Schedule exact alarms are denied by default” [28] as an
example. It explicitly requires that the three APIs, i.e., setExact(), setExactAndAllowWhileIdle(),
and setAlarmClock(), must be called with SCHEDULE_EXACT_ALARM permission. Although it is an
apparent DPC, it is discussed as part of the functionality description of these APIs. DopCheck’s
DPC extraction can capture these sentences and distill the DPCs. It can be used to test Android 14
once the OS and device are available.

7 RELATED WORK

Evolution-induced issues in Android. The evolution of Android APIs has consistently been a
matter of concern in the process of application development and maintenance [34, 38, 39, 45, 47,
53]. Xia et al. [69] employ a combination of static analysis and machine learning techniques to
ascertain whether API compatibility issues during Android version iterations have been e�ectively
addressed. He et al. [34] identify compatibility issues in apps by studying the API di�erences
between di�erent versions of Android. Li et al. [43] investigate the security threats that may
arise from the evolution of Android APIs during version iterations by studying the popularity,
documentation, deprecation, removal, replacement messages, and developer reactions associated
with deprecated APIs. DopCheck focuses on speci�c privacy-related changes, such as permissions,
attributes, UI and their connections. This enables it to reveal in-depth domain-speci�c test cases
and oracles, leading to deep �ndings of privacy-related issues.
Documentation entity extraction and consistency check with implementation. Extracting
various styles of entities from documentation has always been an essential preliminary task in

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 119. Publication date: July 2024.

119:20 Chuan Yan, Mark Huasong Meng, Fuman Xie, Guangdong Bai

research on compliance work. Bacchelli et al. [8] develop an island parsing document strategy
focusing on identifying speci�c and meaningful information blocks (“islands”), while ignoring other
irrelevant or unimportant information (“sea”). Andow et al. [5] propose PolicyLint based on NLP
techniques, to automatically generate ontologies from a large corpus of privacy policies. It analyzes
these policies at the sentence level to detect both positive and negative statements regarding data
collection and sharing. Yan et al. [73] introduce QuPer, which structures privacy policies based on
subsections, thereby analyzing their content quality from multiple perspectives.
On the other hand, with the introduction of various data protection regulations (e.g. GDPR,

California Consumer Privacy Act (CCPA) [61]), there has been extensive research in multiple
domains on the alignment of documentation declaration with actual application implementation [9,
41, 71, 74]. Yang et al. [74] introduce a tool named ManiScope, which utilizes NLP techniques to
identify the syntactic structure of sentences, thereby being used to detect security con�guration
issues presented in Android manifest �les. Bai et al. [9] propose ArgusDroid, which leverages the
o�cial Android documentation to establish a knowledge graph of the relationships between APIs
and permissions. This knowledge graph is used for the analysis and detection of malware family
variants. In other domains, Xie et al. [71] develop Skipper to identify inconsistencies between the
behaviors of Alexa skills and their declared pro�les in the virtual personal assistant domain.
Di�erent from existing studies, DopCheck proposes identifying entities and subsumptive rela-

tionships for the DPC domain to construct domain-speci�c ontologies, which is utilized by LLMs
to generate test cases. DopCheck can reduce the reliance on a vast amount of training data while
ensuring accuracy for domain-speci�c documents.
LLMs for app development and testing. With the success of LLMs in multiple �elds such as
natural language processing, language translation, information retrieval and more, researchers
have initiated investigations into its applicability in software engineering. Several studies have
started using LLMs for automated code generation [12, 14, 36, 37, 72]. Liu et al. [44] conduct an
analysis of the quality of code generated by ChatGPT and propose optimization solutions. In testing
tasks, Feng et al. [17] develop AdbGPT, which uses LLMs to quickly reproduce Android system
bugs. The practicality of this tool is demonstrated through a user study. Liu et al. [46] apply LLMs
in GUI testing. They introduce GPTDroid, through a continuous dialogue, information retrieved
from the GUI pages is relayed to the LLM, iterating through the entire process.

8 CONCLUSION

In this work, we present the �rst comprehensive analysis of consistency between the operational
behaviors of the OS at runtime and the o�cially disclosed DPCs. We design and implement
DopCheck, which uses a set of NLP techniques combined with an LLM to identify DPCs from
Android documentation and generate test cases for DPC issues. DopCheck have identi�ed a total
of 19 bugs, with 13 of them discovered in Android 13 and 6 in Android 10 for the �rst time. Our
work reveals that the inconsistency between the documentation claimed and Android OS actually
behaves still exists. Our �ndings emphasize the importance of further research and action to address
discrepancies in DPCs, aiming to better align documented capabilities with their actual behavior.

9 DATA AVAILABILITY

Availability. The source code of our work and relevant artifacts are available on Github [2].

ACKNOWLEDGMENTS

We thank our anonymous reviewers for their constructive comments. This work is partially sup-
ported by Australian Research Council Discovery Projects (DP230101196, DP240103068).

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 119. Publication date: July 2024.

Investigating Documented Privacy Changes in Android OS 119:21

REFERENCES

[1] 2023. Beautiful Soup Documentations. https://www.crummy.com/software/BeautifulSoup/bs4/doc/
[2] 2024. Investigating Documented Privacy Changes in Android OS (Source Code). https://github.com/DopCHECK/

DopCHECK
[3] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon Kim, Michelle L Mazurek, and Christian Stransky. 2016. You get

where you’re looking for: The impact of information sources on code security. In 2016 IEEE Symposium on Security and

Privacy (SP). IEEE, 289–305. https://doi.org/10.1109/SP.2016.25
[4] Marco Alecci, Jordan Samhi, Tegawendé F. Bissyandé, and Jacques Klein. 2024. Revisiting Android App Categorization.

In 2024 IEEE/ACM 46th International Conference on Software Engineering (ICSE). https://doi.org/10.48550/arXiv.2310.
07290

[5] Benjamin Andow, Samin Yaseer Mahmud, Wenyu Wang, Justin Whitaker, William Enck, Bradley Reaves, Kapil Singh,
and Tao Xie. 2019. PolicyLint: Investigating Internal Privacy Policy Contradictions on Google Play. In USENIX Security

Symposium (USENIX security).
[6] AppBrain. 2023. The most common Android OS versions currently installed on Android devices (phones and tablets)

used by AppBrain SDK users. https://www.appbrain.com/stats/top-android-sdk-versions
[7] AppBrain. 2023. Number of Android apps on Google Play. https://www.appbrain.com/stats/number-of-android-apps
[8] Alberto Bacchelli, Anthony Cleve, Michele Lanza, and Andrea Mocci. 2011. Extracting structured data from natural

language documents with island parsing. In 2011 26th IEEE/ACM International Conference on Automated Software

Engineering (ASE). IEEE, 476–479. https://doi.org/10.1109/ASE.2011.6100103
[9] Yude Bai, Sen Chen, Zhenchang Xing, and Xiaohong Li. 2023. ArgusDroid: detecting Android malware variants by

mining permission-API knowledge graph. Science China Information Sciences 66, 9 (2023), 1–19. https://doi.org/10.
1007/s11432-021-3414-7

[10] Baidu. 2022. Awesome multilingual OCR toolkits based on PaddlePaddle. https://github.com/PaddlePaddle/PaddleOCR
[11] Paolo Calciati, Konstantin Kuznetsov, Alessandra Gorla, and Andreas Zeller. 2020. Automatically granted permissions

in Android apps: An empirical study on their prevalence and on the potential threats for privacy. In Proceedings of the

17th International Conference on Mining Software Repositories (MSR). 114–124. https://doi.org/10.1145/3379597.3387469
[12] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards,

Yuri Burda, Nicholas Joseph, Greg Brockman, et al. 2021. Evaluating large language models trained on code. (2021).
https://doi.org/10.48550/arXiv.2107.03374

[13] Chinese people’s congress. 2021. Personal Information Protection Law of the People’s Republic of China.
(2021). https://digichina.stanford.edu/work/translation-personal-information-protection-law-of-the-peoples-
republic-of-china-e�ective-nov-1-2021/

[14] Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming Zhang. 2023. Large language models are
zero-shot fuzzers: Fuzzing deep-learning libraries via large language models. In Proceedings of the 32nd ACM SIGSOFT

international symposium on software testing and analysis (ISSTA). 423–435. https://doi.org/10.5281/zenodo.7980923
[15] Zikan Dong, Liu Wang, Hao Xie, Guoai Xu, and Haoyu Wang. 2022. Privacy Analysis of Period Tracking Mobile Apps

in the Post-Roe v. Wade Era. In Proceedings of the 37th IEEE/ACM International Conference on Automated Software

Engineering (ASE). 1–6. https://doi.org/10.5281/zenodo.7980923
[16] Zheran Fang, Weili Han, and Yingjiu Li. 2014. Permission based Android security: Issues and countermeasures.

computers & security 43 (2014), 205–218. https://doi.org/10.1016/j.cose.2014.02.007
[17] Sidong Feng and Chunyang Chen. 2024. Prompting Is All Your Need: Automated Android Bug Replay with Large

Language Models. In 2024 IEEE/ACM 46th International Conference on Software Engineering (ICSE). https://doi.org/10.
1145/3597503.3608137

[18] Google. 2019. Android 10 privacy change. https://developer.android.com/about/versions/10/privacy/changes
[19] Google. 2020. Android 11 privacy change. https://developer.android.com/about/versions/11/privacy
[20] Google. 2021. Android 12 change: Request location access at runtime. https://developer.android.com/develop/sensors-

and-location/location/permissions#request-location-access-runtime
[21] Google. 2021. Android 12 privacy change. https://developer.android.com/about/versions/12/summary
[22] Google. 2021. Device Identi�ers. https://source.android.com/docs/core/connect/device-identi�ers?hl=en
[23] Google. 2022. Android 13 change: Granular media permissions. https://developer.android.com/about/versions/13/

behavior-changes-13#granular-media-permissions
[24] Google. 2022. Android 13 privacy change. https://developer.android.com/about/versions/13/summary
[25] Google. 2023. Android 12 change: Approximate location. When an app requests precise location permissions, users

can now opt to grant only approximate location permissions instead. https://developer.android.com/training/location/
permissions#accuracy

[26] Google. 2023. Android 13 change: Hide sensitive content from clipboard. https://developer.android.com/about/
versions/13/behavior-changes-all#copy-sensitive-content

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 119. Publication date: July 2024.

https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://github.com/DopCHECK/DopCHECK
https://github.com/DopCHECK/DopCHECK
https://doi.org/10.1109/SP.2016.25
https://doi.org/10.48550/arXiv.2310.07290
https://doi.org/10.48550/arXiv.2310.07290
https://www.appbrain.com/stats/top-android-sdk-versions
https://www.appbrain.com/stats/number-of-android-apps
https://doi.org/10.1109/ASE.2011.6100103
https://doi.org/10.1007/s11432-021-3414-7
https://doi.org/10.1007/s11432-021-3414-7
https://github.com/PaddlePaddle/PaddleOCR
https://doi.org/10.1145/3379597.3387469
https://doi.org/10.48550/arXiv.2107.03374
https://digichina.stanford.edu/work/translation-personal-information-protection-law-of-the-peoples-republic-of-china-effective-nov-1-2021/
https://digichina.stanford.edu/work/translation-personal-information-protection-law-of-the-peoples-republic-of-china-effective-nov-1-2021/
https://doi.org/10.5281/zenodo.7980923
https://doi.org/10.5281/zenodo.7980923
https://doi.org/10.1016/j.cose.2014.02.007
https://doi.org/10.1145/3597503.3608137
https://doi.org/10.1145/3597503.3608137
https://developer.android.com/about/versions/10/privacy/changes
https://developer.android.com/about/versions/11/privacy
https://developer.android.com/develop/sensors-and-location/location/permissions#request-location-access-runtime
https://developer.android.com/develop/sensors-and-location/location/permissions#request-location-access-runtime
https://developer.android.com/about/versions/12/summary
https://source.android.com/docs/core/connect/device-identifiers?hl=en
https://developer.android.com/about/versions/13/behavior-changes-13#granular-media-permissions
https://developer.android.com/about/versions/13/behavior-changes-13#granular-media-permissions
https://developer.android.com/about/versions/13/summary
https://developer.android.com/training/location/permissions#accuracy
https://developer.android.com/training/location/permissions#accuracy
https://developer.android.com/about/versions/13/behavior-changes-all#copy-sensitive-content
https://developer.android.com/about/versions/13/behavior-changes-all#copy-sensitive-content

119:22 Chuan Yan, Mark Huasong Meng, Fuman Xie, Guangdong Bai

[27] Google. 2023. Android 14 Beta. https://developer.android.com/about/versions/14
[28] Google. 2023. Android 14 change: Schedule exact alarms are denied by defaul. https://developer.android.com/about/

versions/14/changes/schedule-exact-alarms
[29] Google. 2023. Android 14 features and changes list. https://developer.android.com/about/versions/14/summary
[30] Google. 2023. Determine sensitive data access needs. https://developer.android.com/games/develop/permissions?hl=en
[31] Google. 2023. Permissions updates in Android 11. https://developer.android.com/about/versions/11/privacy/

permissions
[32] Google. 2023. Request runtime permissions. https://developer.android.com/training/permissions/requesting
[33] Google. 2023. TelephonyManager class summary. https://developer.android.com/reference/android/telephony/

TelephonyManager
[34] Dongjie He, Lian Li, Lei Wang, Hengjie Zheng, Guangwei Li, and Jingling Xue. 2018. Understanding and detecting

evolution-induced compatibility issues in android apps. In Proceedings of the 33rd ACM/IEEE International Conference

on Automated Software Engineering (ASE). https://doi.org/10.1145/3238147.3238185
[35] Marti A Hearst. 1992. Automatic acquisition of hyponyms from large text corpora. In COLING 1992 Volume 2: The 14th

International Conference on Computational Linguistics.
[36] Qing Huang, Zhiqiang Yuan, Zhenchang Xing, Xiwei Xu, Liming Zhu, and Qinghua Lu. 2022. Prompt-tuned code

language model as a neural knowledge base for type inference in statically-typed partial code. In Proceedings of the 37th

IEEE/ACM International Conference on Automated Software Engineering (ASE). 1–13. https://doi.org/10.1145/3551349.
3556912

[37] Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natarajan, Suresh Parthasarathy, Sriram Rajamani, and Rahul
Sharma. 2022. Jigsaw: Large languagemodels meet program synthesis. In Proceedings of the 44th International Conference
on Software Engineering (ICSE). 1219–1231. https://doi.org/10.1145/3510003.3510203

[38] Maxime Lamothe, Yann-Gaël Guéhéneuc, and Weiyi Shang. 2021. A systematic review of API evolution literature.
ACM Computing Surveys (CSUR) 54, 8 (2021), 1–36. https://doi.org/10.1145/3470133

[39] Maxime Lamothe, Weiyi Shang, and Tse-Hsun Peter Chen. 2020. A3: Assisting android api migrations using code
examples. IEEE Transactions on Software Engineering 48, 2 (2020), 417–431. https://doi.org/10.1109/TSE.2020.2988396

[40] Ada Lerner, Anna Kornfeld Simpson, Tadayoshi Kohno, and Franziska Roesner. 2016. Internet jones and the raiders
of the lost trackers: An archaeological study of web tracking from 1996 to 2016. In 25th USENIX Security Symposium

(USENIX Security).
[41] Hongwei Li, Sirui Li, Jiamou Sun, Zhenchang Xing, Xin Peng, Mingwei Liu, and Xuejiao Zhao. 2018. Improving

api caveats accessibility by mining api caveats knowledge graph. In 2018 IEEE International Conference on Software

Maintenance and Evolution (ICSME). IEEE, 183–193. https://doi.org/10.1109/ICSME.2018.00028
[42] Li Li, Tegawendé F Bissyandé, Haoyu Wang, and Jacques Klein. 2018. Cid: Automating the detection of api-related

compatibility issues in android apps. In Proceedings of the 27th ACM SIGSOFT International Symposium on Software

Testing and Analysis (ISSTA). 153–163. https://doi.org/10.1145/3213846.3213857
[43] Li Li, Jun Gao, Tegawendé F Bissyandé, Lei Ma, Xin Xia, and Jacques Klein. 2020. Cda: Characterising deprecated

android apis. Empirical Software Engineering 25 (2020), 2058–2098. https://doi.org/10.1007/s10664-019-09764-z
[44] Yue Liu, Thanh Le-Cong, Ratnadira Widyasari, Chakkrit Tantithamthavorn, Li Li, Xuan-Bach D Le, and David Lo. 2023.

Re�ning ChatGPT-Generated Code: Characterizing and Mitigating Code Quality Issues. ACM Transactions on Software

Engineering and Methodology. https://doi.org/10.1145/3643674
[45] Yue Liu, Chakkrit Tantithamthavorn, Li Li, and Yepang Liu. 2022. Deep learning for android malware defenses: a

systematic literature review. Comput. Surveys 55, 8 (2022), 1–36. https://doi.org/10.1145/3544968
[46] Zhe Liu, Chunyang Chen, Junjie Wang, Mengzhuo Chen, Boyu Wu, Xing Che, Dandan Wang, and Qing Wang. 2023.

Chatting with GPT-3 for Zero-Shot Human-Like Mobile Automated GUI Testing. In Proceedings of ACM SIGSOFT

International Symposium on Software Testing and Analysis (ISSTA). https://doi.org/10.48550/arXiv.2305.09434
[47] Tarek Mahmud, Meiru Che, and Guowei Yang. 2023. Detecting Android API Compatibility Issues With API Di�erences.

IEEE Transactions on Software Engineering (2023). https://doi.org/10.1109/TSE.2023.3274153
[48] Claudio Marforio, Hubert Ritzdorf, Aurélien Francillon, and Srdjan Capkun. 2012. Analysis of the communication be-

tween colluding applications on modern smartphones. In Proceedings of the 28th Annual Computer Security Applications

Conference. 51–60. https://doi.org/10.1145/2420950.2420958
[49] Alejandro Mazuera-Rozo, Camilo Escobar-Velásquez, Juan Espitia-Acero, Mario Linares-Vásquez, and Gabriele Bavota.

2023. CONAN: Statically Detecting Connectivity Issues in Android Applications. In Proceedings of the 31st ACM Joint

European Software Engineering Conference and Symposium on the Foundations of Software Engineering (FSE). 2182–2186.
https://doi.org/10.1145/3611643.3613097

[50] Mark Huasong Meng, Qing Zhang, Guangshuai Xia, Yuwei Zheng, Yanjun Zhang, Guangdong Bai, Zhi Liu, Sin G
Teo, and Jin Song Dong. 2023. Post-GDPR threat hunting on android phones: dissecting OS-level safeguards of
user-unresettable identi�ers. In The Network and Distributed System Security Symposium (NDSS).

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 119. Publication date: July 2024.

https://developer.android.com/about/versions/14
https://developer.android.com/about/versions/14/changes/schedule-exact-alarms
https://developer.android.com/about/versions/14/changes/schedule-exact-alarms
https://developer.android.com/about/versions/14/summary
https://developer.android.com/games/develop/permissions?hl=en
https://developer.android.com/about/versions/11/privacy/permissions
https://developer.android.com/about/versions/11/privacy/permissions
https://developer.android.com/training/permissions/requesting
https://developer.android.com/reference/android/telephony/TelephonyManager
https://developer.android.com/reference/android/telephony/TelephonyManager
https://doi.org/10.1145/3238147.3238185
https://doi.org/10.1145/3551349.3556912
https://doi.org/10.1145/3551349.3556912
https://doi.org/10.1145/3510003.3510203
https://doi.org/10.1145/3470133
https://doi.org/10.1109/TSE.2020.2988396
https://doi.org/10.1109/ICSME.2018.00028
https://doi.org/10.1145/3213846.3213857
https://doi.org/10.1007/s10664-019-09764-z
https://doi.org/10.1145/3643674
https://doi.org/10.1145/3544968
https://doi.org/10.48550/arXiv.2305.09434
https://doi.org/10.1109/TSE.2023.3274153
https://doi.org/10.1145/2420950.2420958
https://doi.org/10.1145/3611643.3613097

Investigating Documented Privacy Changes in Android OS 119:23

[51] Kristopher Micinski, Daniel Votipka, Rock Stevens, Nikolaos Ko�nas, Michelle L Mazurek, and Je�rey S Foster. 2017.
User interactions and permission use on android. In Proceedings of the 2017 CHI Conference on Human Factors in

Computing Systems. 362–373. https://doi.org/10.1145/3025453.3025706
[52] Suman Nath. 2015. Madscope: Characterizing mobile in-app targeted ads. In Proceedings of the 13th Annual International

Conference on Mobile Systems, Applications, and Services (MobiSys). 59–73. https://doi.org/10.1145/2742647.2742653
[53] Juliana Oliveira, Deise Borges, Thaisa Silva, Nelio Cacho, and Fernando Castor. 2018. Do android developers neglect

error handling? amaintenance-Centric study on the relationship between android abstractions and uncaught exceptions.
Journal of Systems and Software 136 (2018), 1–18. https://doi.org/10.1016/j.jss.2017.10.032

[54] OpenAI. 2023. GPT-4 Technical Report.
[55] Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. 2023. Instruction tuning with gpt-4. arXiv

preprint arXiv:2304.03277 (2023). https://doi.org/10.48550/arXiv.2304.03277
[56] Personal Data Protection Commission. 2012. PERSONAL DATA PROTECTION ACT 2012. (2012). https://sso.agc.gov.

sg/Act/PDPA2012
[57] Abbas Razaghpanah, Rishab Nithyanand, Narseo Vallina-Rodriguez, Srikanth Sundaresan, Mark Allman, Christian

Kreibich, Phillipa Gill, et al. 2018. Apps, trackers, privacy, and regulators: A global study of the mobile tracking
ecosystem. In The 25th Annual Network and Distributed System Security Symposium (NDSS).

[58] Joel Reardon, Álvaro Feal, Primal Wijesekera, Amit Elazari Bar On, Narseo Vallina-Rodriguez, and Serge Egelman.
2019. 50 ways to leak your data: An exploration of apps’ circumvention of the android permissions system. In 28th

USENIX security symposium (USENIX security).
[59] Spacy. 2020. SpaCy Documentations. https://spacy.io
[60] Raphael Spreitzer, Veelasha Moonsamy, Thomas Korak, and Stefan Mangard. 2017. Systematic classi�cation of side-

channel attacks: A case study for mobile devices. IEEE communications surveys & tutorials 20, 1 (2017), 465–488.
https://doi.org/10.1109/COMST.2017.2779824

[61] State of California Department. 2018. California Consumer Privacy Act (CCPA). (2018). https://oag.ca.gov/privacy/ccpa
[62] Statista. 2023. Global market share held by mobile operating systems from 1st quarter 2009 to 2nd quarter 2023.

https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
[63] Thomas Sutter and Bernhard Tellenbach. 2023. FirmwareDroid: Towards Automated Static Analysis of Pre-Installed

Android Apps. In 2023 IEEE/ACM 10th International Conference onMobile Software Engineering and Systems (MOBILESoft).
12–22. https://doi.org/10.1109/MOBILSoft59058.2023.00009

[64] The European Parliament. 2016. GDPR-Right to be Informed. https://gdpr-info.eu/issues/right-to-be-informed/
[65] The European Parliament. 2016. General Data Protection Regulation. O�cial Journal of the European Union (2016).
[66] Vasudev Vikram, Caroline Lemieux, and Rohan Padhye. 2023. Can Large Language Models Write Good Property-Based

Tests? arXiv preprint arXiv:2307.04346 (2023). https://doi.org/10.48550/arXiv.2307.04346
[67] Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen, Hanxiao Liu, Da Huang, Denny

Zhou, et al. 2023. Larger language models do in-context learning di�erently. arXiv preprint arXiv:2303.03846 (2023).
https://doi.org/10.48550/arXiv.2303.03846

[68] B. Wolford. 2022. What are the GDPR �nes? https://gdpr.eu/�nes/
[69] Hao Xia, Yuan Zhang, Yingtian Zhou, Xiaoting Chen, Yang Wang, Xiangyu Zhang, Shuaishuai Cui, Geng Hong,

Xiaohan Zhang, Min Yang, et al. 2020. How Android developers handle evolution-induced API compatibility issues: a
large-scale study. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering (ICSE). 886–898.
https://doi.org/10.1145/3377811.3380357

[70] Fuman Xie, Chuan Yan, Mark Huasong Meng, Shaoming Teng, Yanjun Zhang, and Guangdong Bai. 2024. Are Your
Requests Your True Needs? Checking Excessive Data Collection in VPA Apps. In 2024 IEEE/ACM 46th International

Conference on Software Engineering (ICSE). https://doi.org/10.1145/3597503.3639107
[71] Fuman Xie, Yanjun Zhang, Chuan Yan, Suwan Li, Lei Bu, Kai Chen, Zi Huang, and Guangdong Bai. 2022. Scrutinizing

privacy policy compliance of virtual personal assistant apps. In Proceedings of the 37th IEEE/ACM International

Conference on Automated Software Engineering (ASE). 1–13. https://doi.org/10.1145/3551349.3560416
[72] Frank F Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. 2022. A systematic evaluation of large language

models of code. In Proceedings of the 6th ACM SIGPLAN International Symposium on Machine Programming. 1–10.
https://doi.org/10.1145/3520312.3534862

[73] Chuan Yan, Fuman Xie, Mark Huasong Meng, Yanjun Zhang, and Guangdong Bai. 2024. On the Quality of Privacy
Policy Documents of Virtual Personal Assistant Applications. Proceedings on Privacy Enhancing Technologies (2024).
https://doi.org/10.56553/popets-2024-0028

[74] Yuqing Yang, Mohamed Elsabagh, Chaoshun Zuo, Ryan Johnson, Angelos Stavrou, and Zhiqiang Lin. 2022. Detecting
and Measuring Miscon�gured Manifests in Android Apps. In Proceedings of the 2022 ACM SIGSAC Conference on

Computer and Communications Security. 3063–3077. https://doi.org/10.1145/3548606.3560607

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 119. Publication date: July 2024.

https://doi.org/10.1145/3025453.3025706
https://doi.org/10.1145/2742647.2742653
https://doi.org/10.1016/j.jss.2017.10.032
https://doi.org/10.48550/arXiv.2304.03277
https://sso.agc.gov.sg/Act/PDPA2012
https://sso.agc.gov.sg/Act/PDPA2012
https://spacy.io
https://doi.org/10.1109/COMST.2017.2779824
https://oag.ca.gov/privacy/ccpa
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://doi.org/10.1109/MOBILSoft59058.2023.00009
https://gdpr-info.eu/issues/right-to-be-informed/
https://doi.org/10.48550/arXiv.2307.04346
https://doi.org/10.48550/arXiv.2303.03846
https://gdpr.eu/fines/
https://doi.org/10.1145/3377811.3380357
https://doi.org/10.1145/3597503.3639107
https://doi.org/10.1145/3551349.3560416
https://doi.org/10.1145/3520312.3534862
https://doi.org/10.56553/popets-2024-0028
https://doi.org/10.1145/3548606.3560607

119:24 Chuan Yan, Mark Huasong Meng, Fuman Xie, Guangdong Bai

[75] Zhiju Yang and Chuan Yue. 2020. A comparative measurement study of web tracking on mobile and desktop
environments. Proceedings on Privacy Enhancing Technologies 2020, 2 (2020). https://doi.org/10.2478/popets-2020-0016

[76] Jiahao Yu, Xingwei Lin, and Xinyu Xing. 2023. GPTFUZZER: Red Teaming Large LanguageModels with Auto-Generated
Jailbreak Prompts. arXiv preprint arXiv:2309.10253 (2023). https://doi.org/10.48550/arXiv.2309.10253

[77] Kaifa Zhao, Xian Zhan, Le Yu, Shiyao Zhou, Hao Zhou, Xiapu Luo, Haoyu Wang, and Yepang Liu. 2023. Demystifying
privacy policy of third-party libraries in mobile apps. In 2023 IEEE/ACM 45th International Conference on Software

Engineering (ICSE). https://doi.org/10.1109/ICSE48619.2023.00137

Received 2023-09-28; accepted 2024-04-16

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 119. Publication date: July 2024.

https://doi.org/10.2478/popets-2020-0016
https://doi.org/10.48550/arXiv.2309.10253
https://doi.org/10.1109/ICSE48619.2023.00137

	Abstract
	1 Introduction
	2 A Motivating Example and Approach Overview
	2.1 DPC Issues
	2.2 Overview of DopCheck

	3 DPC Ontology Construction
	3.1 Extracting DPCs
	3.2 Formulating Ontology

	4 DPC Issue Detection
	4.1 Generating Test Cases
	4.2 Assertions

	5 Evaluation and Landscape
	5.1 RQ1: Ontology Extraction and Real-World DPCs Categorization
	5.2 RQ2: Test Case Generation
	5.3 RQ3: DPC Issues Landscape

	6 Discussions
	6.1 Recommendations
	6.2 Limitations
	6.3 DopCheck's Applicability to Upcoming Android Versions

	7 Related Work
	8 conclusion
	9 DATA AVAILABILITY
	Acknowledgments
	References

