
Progressive Control Flow Obfuscation for Android
Applications

Li Zhang, Huasong Meng, Vrizlynn L. L. Thing
Institute for Infocomm Research

A*STAR
Singapore

{zhang-li, menghs, vriz}@i2r.a-star.edu.sg

Abstract—Android bytecode is easy to reverse engineer. It has
been a common practice for Android application developers to
protect their applications with obfuscation techniques. Control
flow obfuscation aims to make it more difficult to determine
the actual application control flows and thereby impede the
understanding of the application logic by the attacker. Despite
of the strong potency (i.e., high complexity increment), control
flow obfuscation usually incurs a large overhead due to the call
and return instructions inserted, which makes the application
developer reluctant to use it in practice. In this paper, we
present a pragmatic control-flow obfuscation approach where the
application developer has more freedom to customize the trade-
off between the achieved complexity and overhead. A new subset
of application methods will be obfuscated by using a combination
of packed-switch and try-catch constructs in different rounds,
and larger methods are obfuscated by creating more code
fragments in earlier rounds. After each round, the complexity
increment will be automatically calculated using our implemented
cyclomatic complexity based metric and checked against the
target complexity increment. In other words, the obfuscation is
conducted in a progressive manner until the target complexity
increment is reached. The experimental results show that our
method incurs averaged area overhead of 4.07% while achieving
almost double complexity increment than the existing method
when the same number of application methods are obfuscated.

Keywords—Android, application security, software obfusca-
tion, reverse engineering

I. INTRODUCTION

Smart phones have been pervasive in our daily life. People
are increasingly relying on smart phone applications for social
networking, media streaming, financial transactions, etc. In
the year 2017 alone, a total of 1.5 billion units of smart
phones were purchased by the end users, among which 86%
of devices were powered by Android [1]. At the same time,
the revenue generated by Google Play and third-party An-
droid application stores reached $41 billion in 2017 and is
projected to be $78 billion in 2021 [2]. The extensive user
base and the easy-to-reverse nature of Android applications
has, however, made these applications the most attractive
targets for cybercriminals. For example, an attacker may obtain
the code of a popular Android application through reverse
engineering, modify the code to remove copyright information

This material is based on research work supported by the Singapore Na-
tional Research Foundation under NCR Award No. NRF2014NCR-NCR001-
034.

or add malicious modules, and then repackage and release the
application under his own key.

Android applications are important intellectual property of
the original developers. To protect them from possible attacks,
it has been common for the developers to use obfuscation
techniques. Obfuscation is the process of obscuring the pro-
gram attributes that can be potentially exploited by reverse
engineering while preserving the semantics of the original
code. There have been a number of Android obfuscation tools
available in the market, such as Proguard [3], DexGuard [4],
DexProtector [5], and DashO [6]. These tools offer multiple
layout or data obfuscation options such as identifier renaming,
debugging information removal, and encryption of strings,
arithmetic instructions, and resources. Some of these tools can
further perform simple control flow obfuscation by inserting
opaque predicates [7] (i.e., conditional expressions that always
returns true or false but are hard to be determined by static
analysis). However, none of these tools offer complex control-
flow obfuscation like those proposed for other platforms [8–
10], which can scatter code fragments in application methods
and increase the control flow diversion among the fragments.

There are also a limited number of complex control flow
obfuscation methods for Android applications found in litera-
ture. Although the various control-flow obfuscation techniques
proposed at the Java source code level [11–13] are also appli-
cable to Android applications, due to the problems of variable
scoping and data dependency, they share the same drawback
that code splitting can only be done at the boundaries of the ba-
sic blocks [8]. An additional challenge for performing control
flow obfuscation at the Java source code level comes from the
lack of unconditional jump instructions like goto. As a result,
it is hard to transform high-level code constructs like while
and for into the simple if-then-goto constructs for code
splitting. The work in [14] proposed a Java bytecode based
control flow obfuscation technique, where the Java bytecode
is firstly translated to an intermediate representation (IR)
called Jimple [15] and goto instructions are then inserted to
facilitate code splitting. Nonetheless, the obfuscator targets the
Java bytecode executed in the stack-based JVM, and cannot be
directly applied on Android bytecode executed in the register-
based Android virtual machine (i.e., Dalvik virtual machine
(DVM) or Android runtime (ART)).

Simple control flow obfuscation techniques based on the
insertion of opaque predicates were applied on Android ap-
plications in [16, 17] to examine the effectiveness of An-
droid anti-malware systems in detecting transformed malware
variants. The first complex control flow obfuscation method
for Android applications was proposed in [18], where the
control flow of each obfuscated application method is dis-
turbed by inserting a combination of the packed-switch
and try-catch constructs as well as goto instructions into
the smali representation of the Android bytecode. To resolve
the possible register-type conflict issue, which may be raised
by the Android virtual machine when the bytecode is split
or relocated, a register-type separation technique was used. In
the approach, however, all obfuscated application methods are
split into the same number of code fragments, which results in
a fixed and constant complexity increment for each obfuscated
method. In fact, as the size of application methods ranges from
several lines of code (LoC) to hundreds of lines, the number
of possible code fragments that can be generated (i.e., the
potential complexity increment for these methods) is different.
In view of this, we propose a new progressive obfuscation ap-
proach, where larger methods in the application are obfuscated
by creating more code fragments in earlier rounds. Besides,
unlike the method in [18] which just qualitatively analyze the
complexity increment, we implement a cyclomatic complexity
based metric and use it to quantitatively measure the achieved
complexity increment after each round of obfuscation. There
are two obvious advantages for the new approach. Firstly,
higher complexity increment can be achieved when the same
number of application methods are obfuscated (at a reasonably
low area overhead, as will be shown in section III). Secondly,
as the obfuscation process is divided into several rounds and
performed in a progressive manner, by utilizing the quantified
complexity increment, the user is able to decide whether the
target complexity increment is achieved after each round of
obfuscation. This will facilitate a good balance between the
protection level and overhead.

The primary contributions of this work are as follows:

• We propose a new progressive approach to obfuscate the
control flow of Android application methods. The obfus-
cation process is divided into several rounds, where larger
application methods are obfuscated in earlier rounds with
more code fragments created. Compared to the existing
method which creates a constant number of code frag-
ments for each obfuscated method, our new approach
better exploits the potential of complexity increment of
the obfuscated methods.

• We propose to use a metric to quantify the complexity
increment during the obfuscation process. With the im-
plemented cyclomatic complexity based metric, the user
is able to decide whether the complexity increment has
reached his desired level after each round of obfuscation.
As a result, the application developer will be able to
customize the trade-off between the resultant complexity
and overhead.

Application Module

...

Compilers
Compiled resources

DEX file(s)

Our obfuscator on
Dalvik bytecode

Compiled resources

Obfuscated DEX file(s)

Library modules

Dependencies

...

Packaging

& Signing
Obfuscated APK

Source code

Resource files

Fig. 1: The build process of obfuscated Android application in our method.

II. THE PROPOSED METHOD

Android applications are mainly written in Java codes,
which are then compiled along with data and resource files
into an archive file called Android Package Kit (APK). The
binary Android bytecode file (.dex) in the APK contains all the
classes and can be converted to an intermediate representation
called smali code (akin to assembly code). The smali code of
an application method is the text-based mnemonics equivalent
to the method bytecode. This kind of low-level representation
can express arbitrary control flow due to the existence of goto
instructions (missing in Java code) [11]. As a result, we choose
to implement our control flow obfuscation method on the smali
representation of Dalvik bytecode.

Figure 1 shows the process of building an obfuscated
application in our method. The obfuscation is transparent to
the typical build process of a normal Android application.
Our obfuscation method consists of two main phases. In
the first phase, statistics about the number of application
methods that can be divided under different numbers of code
fragments are extracted. This phase facilitate the determina-
tion of the different numbers of code fragments to be used
in obfuscation. In the second phase, the multi-round based
progressive obfuscation is conducted. At each round, a new
subset of application methods will be obfuscated based on the
corresponding number of code fragments. Details of these two
phases are described in the remaining part of this section.

A. Statistical analysis of the target application

Basically, our technique achieves method level obfuscation.
It obfuscates the control flow of an application method by
splitting its code into multiple code fragments and shuffling
their respective locations while preserving the original execu-
tion sequence. We denote the number of code fragments as
nc. The size of the application method (i.e., in terms of LoC)
determines the maximum nc it can be divided. Nonetheless,
the Android virtual machine, in which the application is exe-
cuted, specifies various static and structural constraints for the
bytecode to ensure the runnability of the application [19]. For
instance, the instruction move-result* must be immedi-
ately preceded by a method invocation instruction invoke-*.

As a result, we have to make sure these two instructions stay
in the same code fragments after code splitting. Due to these
constraints, the maximum nc for a specific application method
is further reduced. In our method, the smali representation
of the application is firstly input to a preprocessing module.
The preprocessing module, which loads the constraints that
must be met to maintain the application runnability, scans the
application to determine the maximum nc for each method.
The output of this module is the statistics for the number of
application methods that can be obfuscated under different nc.
Such statistics facilitate the determination of the list of nc’s
(denoted as # »nc) that will be used in the following multi-round
based obfuscation phase. As a rule of thumb, the list # »nc should
be chosen such that a good number of methods are obfuscated
in each round.

B. The multi-round based progressive obfuscation

The obfuscation phase consists of multiple rounds. Suppose
that based on the statistics obtained in the preprocessing step,
the user decides to perform m rounds of obfuscation, where
»nc = {nc1 , nc2 , . . . , ncm}, | # »nc| = m, and nci > ncj if
i < j. In round i, the corresponding subset of application
methods that can be obfuscated under nci (i ∈ [1,m]) but have
not been obfuscated in previous rounds will be obfuscated.
After obfuscating all the methods at round i, the complexity
increment is measured by a cyclomatic complexity based
metric. The cyclomatic complexity measures the total number
of paths in the control flow graph (CFG) of the target method,
and can be calculated based on the formula e − n + 2 [20],
where e and n represents the edges and nodes of the method
CFG, respectively. Based on the complexity increment at the
end of each round of obfuscation, the user can decide whether
the overall complexity increment is good enough to stop the
obfuscation. If yes, he may choose to obscure the control
flow of the remaining application methods by simply inserting
opaque predicates. Or else, the obfuscation will continue with
a new round by processing a new subsets of application
methods with the smaller nci+1

. By obfuscating the methods
which can be divided into more code fragments, a faster
complexity increment per obfuscated method is achieved. The
pseudocode for the proposed progressive obfuscation approach
is presented in Figure 2.

To obfuscate a specific method, we utilize the tech-
nique proposed in [18], which is based on the use of the
packed-switch and try-catch instructions. Firstly, the
target method is split into nci (i ∈ [1,m]) code fragments,
where the constraints imposed by Android virtual machine
are considered. Due to the availability of unconditional goto
instruction in the smali representation, the code splitting can
be performed within a basic block. Then the code fragment
locations in a method are randomly shuffled to disrupt the
linear order. To ensure that the code fragments are executed as
per the original order during runtime, the packed-switch
instruction within a loop construct is used, together with a
new register directing the transfer between the code frag-
ments. Afterwards, the entire obfuscated code segment is put

Input:
»
MT # all methods in the target app
∆desired # desired complexity increment after obfuscation (optional)
»nc : # the list of nc to be used in each round of obfuscation

| # »nc| = m and nci > ncj , if i < j
Output:

The obfuscated app

»
Mobf = ∅ # initialize an empty list of obfuscated methods
∆ = 0 # total complexity increment, initialized to 0
f o r i = 1 , i <= m, i ++:

Collect
»
Mi #

»
Mi is a subset of

»
MT obfuscatable at nci

#
»
Mi ∩

»
Mobf = ∅

f o r Mj in # »
Mi : # obfuscate all methods in

»
Mi

Obfuscate Mj
»
Mobf =

»
Mobf ∪

»
Mi # mark all methods in

»
Mi as obfuscated

∆ += measured complexity increment for
»
Mi

i f ∆desired != None and ∆ >= ∆desired :
break

Fig. 2: Pseudocode for the proposed propressive obfuscation approach.

inside a try block, where the packed-switch instruction
is replaced by an exception-raising instruction and itself is
moved from the try block to the catch block. The added
try-catch based obfuscation helps further divert the control
flow between the try and catch block. An example of
the obfuscated code is shown in Figure 3. For the simplicity
of illustration, the switching register v1 is directly assigned
with values (during both initialization and updates in the code
fragments) and a simple division-by-zero exception is used.
In practice, we can use the opaque variable whose value is
generated using a hash function, which makes it much more
difficult to infer the values by static analysis.

III. EXPERIMENTAL EVALUATION AND DISCUSSION

The smali representation of the Dalvik bytecode was gener-
ated using apktool [21]. We implemented the constraints from
the Android virtual machine in both the preprocessing module
and the obfuscation module to make sure both the statistical
analysis and obfuscation are performed at the condition of
maintaining the runnability of the application. To implement
the cyclomatic complexity metric, we used the simple way
suggested in [20], which is based on counting the number of
code constructs indicating decision predicates. To evaluate the
overhead and efficacy of our new obfuscation approach, we
leveraged the same experimental setup as in [18], where the
same five popular applications downloaded from the Google
Play store were used. Information about these five applications
such as the name, size, number of methods, and original
complexity of all methods are presented in Table I.

Our method achieves the target of obfuscating the con-
trol flow while preserving the application semantics with
the aid of inserted instructions such as packed-switch,
try-catch, and goto. To evaluate the possible impact on
the size of the resultant apk file, we firstly perform statistical
analysis on the five applications using the preprocessing mod-
ule to extract the number of application methods obfuscatable

c o n s t v1 , 0

: t r y s t a r t o b f
: l oop
a simple division-by-zero exception
c o n s t v3 , 0x5
div−i n t / l i t 8 v3 , v3 , 0x0

randomly shuffled n code fragments - start
: o b f p s w i t c h 0
<code fragment 0>
two instructions added to direct the code execution
c o n s t v1 , 3
go to : l oop

. . .

: o b f p s w i t c h n
<code fragment n>
two instructions added to direct the code execution
c o n s t v1 , 5
go to : l oop

randomly shuffled n code fragments - end

packed swtich payload block
: p s w i t c h o b f

. packed−s w i t c h 0x0
: o b f p s w i t c h 0

. . .
: o b f p s w i t c h n

. end packed−s w i t c h
: t r y e n d o b f

. c a t c h Ljava / l a n g / A r i t h m e t i c E x c e p t i o n ;
{ : t r y s t a r t o b f . . : t r y e n d o b f } : c a t c h o b f

: c a t c h o b f
packed−s w i t c h v1 , : p s w i t c h o b f

Fig. 3: An example smali code obfuscated with the packed-switch and try-catch
instruction. The register v1 is used as the flag register to transfer the execution between
the n code fragments.

TABLE I: Information of the five applications used in the experiments.

App name Size (KB) # methods Complexity
Winamp 1.4.15 7,572 10,527 16,908
Wechat 4.5.1 18,356 38,262 56,697

Line 3.8.4 16,128 43,242 69,740
Sound cloud 2.8.3 7,540 26,645 29,381
Photo editor 1.3.18 1,988 7,412 10,940

at different nc. Based on the statistics, we decided to obfuscate
all the 5 applications based on the list of # »nc = [15, 12, 9, 6, 3].
Under this list of # »nc, there will be at least 150 application
methods that can be obfuscated at each round. This means
that the methods that can be divided into 15 code fragments
(without breaking any runtime constraints from the Android
virtual machine) were obfuscated in the 1st round, then the
remaining methods obfuscatable with 12 code fragments in
the 2nd round, and so on. The resultant size overhead together
with the number of methods obfuscated in each round is shown
in Table II. As expected, the size of the application generally
grows with the number of obfuscated methods. Nonetheless,
after all 5 rounds of obfuscation, where on average 30% of all
application methods were obfuscated, the averaged percentage
of size increase is just 4.07%.

Round 1 Round 2 Round 3 Round 4 Round 5
-50%
-40%
-30%
-20%
-10%

-0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%

Re
la

tiv
e

Di
ffe

re
nc

e

Winamp
Wechat
Line
SoundCloud
PhotoEditor

Fig. 4: The relative difference of total complexity increment achieved in [18] and after
each round of obfuscation in our method.

A major advantage of the proposed method compared
to [18] is that it can achieve much higher complexity by ob-
fuscating the same number of methods. The comparison of the
complexity increment is presented in Table III. The 2nd column
shows the number of obfuscated methods for each application
using the technique in [18], where all obfuscated methods
were divided into 3 code fragments (i.e., under nc = 3). This
number is equal to the total number of obfuscated methods in 5
rounds using our method (see Table II). It can be observed that
the overall complexity increment using the method in [18] and
our method (after 5 rounds of obfuscation) was around 100%
and 200% for all applications, respectively. Figure 4 shows
relative difference between the total complexity increment
achieved in [18] and after each round of obfuscation using
our approach. It is clear that after three rounds, our method
has already achieved higher complexity increment for all ap-
plications. In fact, for all applications except for Sound cloud,
higher complexity increment was even achieved after the 2nd

round. The reason for Sound cloud having slower complexity
increment should be due to the smaller percentage of large
methods. As shown in Table II, the number of obfuscated
methods in the first two rounds accounts for around 25% of
all obfuscated methods for Sound cloud, while the percentage
for the other four applications ranges from 32% to 37%.
Hence, the percentage of larger methods in an application
will impact the effectiveness of our progressive obfuscation
approach. Nonetheless, for all applications, we just need to
obfuscate less than 1/3 of the methods used in [18] to achieve
the same complexity increment.

On the other hand, additional complexity can be easily
achieved by slightly modifying our obfuscation process. For
instance, after splitting the target application method into nc

code fragments, multiple junk code fragments can be inserted.
As there will be edges for these junk code fragments in the
reverse-engineered CFG, the attacker will be further confused.
As the flag register is not assigned the values needed to execute
these fragments, they will not impact the actual execution of
the application. Similarly, in the created try block, junk codes
can also be inserted after the exception-raising operations.

TABLE II: Size overhead of the proposed progressive obfuscation approach. All application sizes are in KB. Column #obfuscated method lists the number of methods obfuscated
at the specific round, while Column Size after obfuscation lists the resultant APK size if obfuscation stops at the round.

Round 1(nc = 15) Round 2 (nc = 12) Round 3 (nc = 9) Round 4 (nc = 6) Round 5 (nc = 3)

App name # obfuscated
method

Size after
obfuscation

obfuscated
method

Size after
obfuscation

obfuscated
method

Size after
obfuscation

obfuscated
method

Size after
obfuscation

obfuscated
method

Size after
obfuscation

Winamp 715 7,652
(+1.06%) 219 7,672

(+1.32%) 337 7,688
(+1.53%) 575 7,708

(+1.80%) 1,090 7,728
(+2.06%)

Wechat 3,877 18776
(+2.29%) 1,082 18,852

(+2.70%) 1,606 18,924
(+3.09%) 2,219 18,996

(+3.49%) 4,566 19,072
(+3.90%)

Line 3,262 16440
(+1.93%) 1,086 16,508

(+2.36%) 1,475 16,584
(+2.83%) 2,700 16,668

(+3.35%) 4,794 16,752
(+3.87%)

Sound cloud 1,100 7664
(+1.64%) 429 7,692

(+2.02%) 704 7,732
(+2.55%) 1,488 7,784

(+3.24%) 2,301 7,832
(+3.87%)

Photo editor 629 2060
(+3.62%) 154 2,076

(+4.43%) 252 2,088
(+5.03%) 413 2,104

(5.84%) 706 2,120
(+6.64%)

Average +2.11% +2.57% +3.01% +3.54% 4.07%

TABLE III: Comparison of complexity increment with our progressive obfuscation approach and the one in [18] (adopting nc = 3 for all methods). Column complexity increment
lists the total complexity increment and percentage difference of the resultant application compared to that of the original application.

Method proposed in [18]
(nc = 3) Round 1 (nc = 15) Round 2 (nc = 12) Round 3 (nc = 9) Round 4 (nc = 6) Round 5 (nc = 3)

App name # obfuscated methods Complexity
increment

Complexity
increment

Complexity
increment

Complexity
increment

Complexity
increment

Complexity
increment

Winamp 2,936 14,680
(+86.82%)

12,155
(+71.89%)

15,221
(+90.02%)

18,928
(+111.94%)

23,528
(+139.15%)

28,978
(+171.39%)

Wechat 13,350 66,750
(+117.73%)

65,909
(+116.24%)

81,057
(+142.97%)

98,723
(+174.12%)

116,475
(+205.43%)

139,305
(+245.70%)

Line 13,317 66,585
(+95.48%)

55,454
(+79.52%)

70,658
(+101.32%)

86,883
(+124.58%)

108,483
(+155.55%)

132,453
(+189.92%)

Sound cloud 6,022 30,110
(+102.48%)

18,700
(+63.65%)

24,706
(+84.09%)

32,450
(+110.45%)

44,354
(+150.96%)

55,869
(+190.12%)

Photo editor 2,154 10,770
(+98.45%)

10,693
(+97.74%)

12,849
(+117.45%)

15,621
(+142.79%)

18,925
(+172.99%)

22,455
(+205.26%)

IV. CONCLUSION

We proposed a progressive approach to obscure the control
flow of Android applications, where larger methods are divided
into more code fragments and obfuscated in earlier rounds
of obfuscation. Statistics on the number of methods that can
be obfuscated at different numbers of code fragments were
extracted to assist the obfuscation process. After each round,
the cyclomatic complexity based metric will quantitatively
measure the complexity increment so that the user can decide
whether the obfuscation has already met his requirement,
hence providing more freedom to balance the obfuscation
complexity and overhead. Despite of achieving higher com-
plexity increment than the existing method, our method just
incurs reasonably low overhead, which makes it feasible to use
our method together with other types of obfuscation techniques
to better safeguard the IP of the application developer.

REFERENCES

[1] Gartner. Gartner says worldwide sales of smartphones recorded first
ever decline during the fourth quarter of 2017. [Online]. Available:
https://www.gartner.com/newsroom/id/3859963.

[2] Bussiness of Apps. App revenues 2017. [Online]. Available: http:
//www.businessofapps.com/data/app-revenues/.

[3] ProGuard. [Online]. Available: http://developer.android.com/tools/help/
proguard.html.

[4] DexGuard. [Online]. Available: https://www.guardsquare.com/software/
dexguard-standard.

[5] DexProtector. [Online]. Available: https://dexprotector.com.
[6] DashO. [Online]. Available: https://www.preemptive.com/products/

dasho.
[7] C. Collberg, C. Thomborson, and D. Low, “Manufacturing cheap, re-

silient, and stealthy opaque constructs,” in Proceedings of the 25th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
1998, pp. 184–196.

[8] C. Wang, J. Hill, J. Knight, and J. Davidson, “Software tamper resis-
tance: Obstructing static analysis of programs,” Technical Report CS-
2000-12, University of Virginia, 12 2000, Tech. Rep., 2000.

[9] S. Chow, Y. Gu, H. Johnson, and V. A. Zakharov, “An approach to
the obfuscation of control-flow of sequential computer programs,” in
International Conference on Information Security. Springer, 2001, pp.
144–155.

[10] I. V. Popov, S. K. Debray, and G. R. Andrews, “Binary obfuscation
using signals.” in USENIX Security Symposium, 2007, pp. 275–290.

[11] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating
transformations,” Department of Computer Science, The University of
Auckland, New Zealand, Tech. Rep., 1997.

[12] D. Low, “Protecting java code via code obfuscation,” Crossroads, vol. 4,
no. 3, pp. 21–23, 1998.

[13] ——, “Java control flow obfuscation,” Ph.D. dissertation, Citeseer, 1998.
[14] M. Batchelder and L. Hendren, “Obfuscating java: The most pain for

the least gain,” in International Conference on Compiler Construction.
Springer, 2007, pp. 96–110.

[15] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot: A java bytecode optimization framework,” in CASCON First
Decade High Impact Papers. IBM Corp., 2010, pp. 214–224.

[16] V. Rastogi, Y. Chen, and X. Jiang, “Catch me if you can: Evaluating
android anti-malware against transformation attacks,” IEEE Transactions
on Information Forensics and Security, vol. 9, no. 1, pp. 99–108, 2014.

[17] M. Zheng, P. P. Lee, and J. C. Lui, “Adam: an automatic and extensible
platform to stress test android anti-virus systems,” in International
conference on detection of intrusions and malware, and vulnerability
assessment. Springer, 2012, pp. 82–101.

[18] V. Balachandran, D. J. Tan, V. L. Thing et al., “Control flow obfuscation
for android applications,” Computers & Security, vol. 61, pp. 72–93,
2016.

[19] Android open source project - constraints. [Online]. Available:
https://source.android.com/devices/tech/dalvik/constraints.

[20] A. H. Watson, D. R. Wallace, and T. J. McCabe, Structured testing: A
testing methodology using the cyclomatic complexity metric. US De-
partment of Commerce, Technology Administration, National Institute
of Standards and Technology, 1996, vol. 500, no. 235.

[21] APK Tool. A tool for reverse engineering android apk files. [Online].
Available: https://ibotpeaches.github.io/Apktool/.

