
GlitchProber: Advancing Effective Detection and Mitigation of
Glitch Tokens in Large Language Models

Zhibo Zhang∗
Huazhong University of Science and

Technology
Wuhan, China

zhangzhibom@hust.edu.cn

Wuxia Bai∗
Huazhong University of Science and

Technology
Wuhan, China

wuxiabai@hust.edu.cn

Yuxi Li∗
Huazhong University of Science and

Technology
Wuhan, China

yuxili@hust.edu.cn

Mark Huasong Meng
Technical University of Munich

Munich, Germany
huasong.meng@gmail.com

Kailong Wang†
Huazhong University of Science and

Technology
Wuhan, China

wangkl@hust.edu.cn

Ling Shi
Nanyang Technological University

Singapore, Singapore
ling.shi@ntu.edu.sg

Li Li
Beihang University

Beijing, China
lilicoding@ieee.org

Jun Wang
Beihang University

Beijing, China
junwang.lu@gmail.com

Haoyu Wang
Huazhong University of Science and

Technology
Wuhan, China

haoyuwang@hust.edu.cn

ABSTRACT

Large language models (LLMs) have achieved unprecedented suc-
cess in the field of natural language processing. However, the black-
box nature of their internal mechanisms has broughtmany concerns
about their trustworthiness and interpretability. Recent research
has discovered a class of abnormal tokens in the model’s vocabulary
space and named them “glitch tokens”. Those tokens, once included
in the input, may induce the model to produce incorrect, irrelevant,
or even harmful results, drastically undermining the reliability and
practicality of LLMs.

In this work, we aim to enhance the understanding of glitch
tokens and propose techniques for their detection and mitigation.
We first reveal the characteristic features induced by glitch to-
kens on LLMs, which are evidenced by significant deviations in
the distributions of attention patterns and dynamic information
from intermediate model layers. Based on the insights, we develop
GlitchProber, a tool for efficient glitch token detection and miti-
gation. GlitchProber utilizes small-scale sampling, principal com-
ponent analysis for accelerated feature extraction, and a simple
classifier for efficient vocabulary screening. Taking one step further,
GlitchProber rectifies abnormal model intermediate layer values
to mitigate the destructive effects of glitch tokens. Evaluated on
∗Co-first author with equal contribution.
†Corresponding Author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1248-7/24/10. . . $15.00
https://doi.org/10.1145/3691620.3695060

five mainstream open-source LLMs, GlitchProber demonstrates
higher efficiency, precision, and recall compared to existing ap-
proaches, with an average F1 score of 0.86 and an average repair
rate of 50.06%. GlitchProber unveils a novel path to address the
challenges posed by glitch tokens and inspires future research to-
ward more robust and interpretable LLMs. Our code is available at
https://github.com/LLM-Integrity-Guard/GlitchProber.

CCS CONCEPTS

• Computing methodologies→ Knowledge representation and
reasoning.

KEYWORDS

LLM security, Glitch token, LLM analysis

ACM Reference Format:

Zhibo Zhang, Wuxia Bai, Yuxi Li, Mark Huasong Meng, Kailong Wang, Ling
Shi, Li Li, Jun Wang, and HaoyuWang. 2024. GlitchProber: Advancing Effec-
tive Detection andMitigation of Glitch Tokens in Large LanguageModels. In
39th IEEE/ACM International Conference on Automated Software Engineering
(ASE ’24), October 27-November 1, 2024, Sacramento, CA, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3691620.3695060

1 INTRODUCTION

In the field of Natural Language Processing (NLP), large language
models (LLMs) like GPT-4 [2], Gemini [31, 34], and Claude 3 [4] have
demonstrated near-human-level text generation capabilities. Their
exceptional performance has led to widespread adoption [16, 35, 41].
When using these models, users provide a prompt, which the
model’s tokenizer breaks down into a series of discrete tokens.
These tokens are the fundamental units of information processing
for the model, playing a crucial role in the usage of LLMs. Recent re-
search [12, 13, 26, 28, 29, 32], however, has shown that some “glitch
tokens” exist in the vocabulary of LLMs. Once included in a prompt,

https://orcid.org/0009-0008-6447-1756
https://orcid.org/0009-0009-5332-9890
https://orcid.org/0009-0008-8032-3841
https://orcid.org/0000-0003-1039-2151
https://orcid.org/0000-0002-3977-6573
https://orcid.org/0000-0002-2023-0247
https://orcid.org/0000-0003-1100-8633
https://doi.org/10.1145/3691620.3695060
https://github.com/LLM-Integrity-Guard/GlitchProber
https://doi.org/10.1145/3691620.3695060

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USAZhibo Zhang, Wuxia Bai, Yuxi Li, Mark Huasong Meng, Kailong Wang, Ling Shi, Li Li, Jun Wang, and Haoyu Wang

these special tokens can potentially lead to model errors, such as
misunderstanding user intent, refusing to answer, or generating
irrelevant or harmful text. Therefore, thorough analysis and detec-
tion of these glitch tokens are crucial to ensure the reliability and
safety of LLMs.

To tackle the glitch tokens issue, one notable method recently
is presented by Li et al. [21]. This typical and intuitive solution
involves studying the characteristics of glitch tokens in the word
embedding space of LLMs and accordingly developing detection
techniques. They discovered that glitch tokens tend to cluster in
the embedding space and proposed an iterative clustering-based
technique called GlitchHunter for efficient glitch token detection.

Although there has been progress in detecting glitch tokens,
there still lacks an efficient and precise detection of glitch tokens
universally applicable in different LLMs. Furthermore, existing ap-
proaches primarily focus on detection, however, how to fix the
issues caused by glitch tokens in the usage of LLMs remains an
open question. Several limitations contribute to the aforementioned
challenges:

(1) The exhaustive search method of checking vocabulary is simple
and intuitive but incurs significant time costs with large token
sets, making it inefficient for practical use.

(2) Existing detection methods primarily identify glitch tokens
based on features like word frequency and word vectors. How-
ever, these features do not deeply explore the mechanisms by
which glitch tokens impact model behaviors, resulting in poor
detection accuracy and generalization performance.

(3) Current research primarily focuses on detecting glitch tokens
rather than how to fix them. While detection can identify issues,
it does not eliminate the negative impact of glitch tokens on
model performance, limiting its practical value.

Our work. To address these existing challenges and bridge the
gap, in this work, we investigate the internal structure of LLMs
to explore the differences between glitch tokens and normal to-
kens. Specifically, through empirical study, we discovered signifi-
cant differences between glitch tokens and normal tokens in terms
of the attention patterns and dynamic information of multi-layer
perceptron (MLP) modules within transformer-based LLMs. This
discovery reveals the adversarial impact of glitch tokens on the
internal mechanisms of the model, indicating that glitch tokens
introduce abnormal interference and noise to neural networks. This
hinders the model from correctly understanding and processing the
semantic information carried by these tokens, ultimately leading
to erroneous outputs.

From these findings, we gain an insight that the glitch tokens
can be efficiently detected due to the deviated distributions of in-
termediate layers’ outputs caused by them, and accordingly their
impact can be effectively mitigated by proactively rectifying those
abnormal outputs. Based on this insight, we propose a new method
for glitch token detection and fix called GlitchProber. For glitch
token detection, GlitchProber first samples a small subset of
manually labeled glitch tokens as the sample set, and extracts the
outputs of these tokens from the intermediate layers, specifically,
the attention scores of the attention patterns andMLP status. It then
applies Principal Component Analysis (PCA) [1] dimensionality
reduction to the intermediate layers’ outputs and obtains a feature

representation matrix for the sample set. This matrix, along with
the corresponding class labels, is used to train a Support Vector
Machine (SVM) [9] classifier, which can subsequently be employed
for glitch token detection. To fix the glitch tokens, GlitchProber
analyzes the activation value range of normal tokens in the interme-
diate MLP status and rectifies the activation states of glitch tokens.
Specifically, it aims to adjust the activation patterns of glitch to-
kens to be closer to those of normal tokens, and thereby minimize
their impact on the model’s output. Our work is published on our
website [15].
Contributions.We summarize our key contributions as follows:
• Empirical Study Exploring the Internal Impact of Glitch

Tokens on LLMs. We conduct a comprehensive and systematic
empirical study on how glitch tokens and normal tokens manifest
at the structural level across different LLMs. One of our key
findings is that glitch tokens can trigger abnormal values in a
model’s attention patterns and MLP status.
• Effective Glitch Token Detection. Our evaluation on five rep-
resentative open source LLMs demonstrates that GlitchProber
can save approximately 40% of time in glitch token detection com-
pared to the state-of-the-art approaches. Additionally, Glitch-
Prober exhibits a significant improvement in detection accuracy.
• Effective Glitch Token Fixing. In terms of fix, GlitchProber
successfully repairs an average of 7,758 tokens across the five
LLMs. It achieves an average repair rate of 50.06%, significantly
outperforming the baseline approach. Our results demonstrate
the effectiveness of the proposed fix strategy by adjusting the
intermediate values of glitch tokens in the intermediate layers.
Ethical Consideration. In this work, we recognize that glitch

tokens can cause abnormal responses from LLMs, potentially affect-
ing their usage. However, we strictly adhere to ethical principles
and do not condone any abuse or exploitation of these findings. Our
research aims to raise awareness of these risks and contribute to a
more secure LLM community. We have reported our findings to the
respective LLM developers and are committed to collaborating with
them to develop effective defenses and mitigation strategies. By
working cooperatively, we promote responsible research practices
and ensure the safe and beneficial use of LLMs.

2 BACKGROUND AND RELATEDWORK

2.1 Transformer-based LLMs

Self-attention [7, 25] is a core component of Transformer-based
models, demonstrating strong modeling capabilities across various
tasks. Given an input 𝑋 ∈ R𝑛×𝑑 , where 𝑛 denotes the sequence
length and 𝑑 denotes the dimension, self-attention linearly projects
𝑋 into query, key, and value representations, i.e., 𝑄 , 𝐾 , and 𝑉 . The
attention scores matrix 𝐴 is then computed by taking the dot prod-
uct between the query and key matrices, followed by a softmax
normalization. The attention output is obtained by multiplying the
attention scores with the value matrix.

𝐴 = softmax(𝑄𝐾
𝑇

√
𝑑
) (1)

Attention(𝑄,𝐾,𝑉) = 𝐴 ·𝑉 (2)
To analyze the behavior of Transformer-based models during se-
quence processing, we introduce the concept of attention patterns,

GlitchProber: Advancing Effective Detection and Mitigation of Glitch Tokens in Large Language Models ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

which can be extracted from the corresponding row 𝐴[𝑛] of the
attention scores matrix 𝐴. In autoregressive generation tasks, the
attention patterns only contain the attention weights between the
current token and previously generated tokens.

The MLP module in Transformer-based models employs a gat-
ing mechanism similar to that of Gated Multi-Layer Perceptrons
(gMLPs) [23]. Given an input 𝑌 ∈ R𝑛×𝑑 , where 𝑛 denotes the se-
quence length and 𝑑 denotes the dimension, the MLP first projects
𝑌 to a higher-dimensional space using a linear transformation:

𝑍 = 𝑌𝑈 (3)

where 𝑈 ∈ R𝑑×𝑑𝑚 is a learnable weight matrix. The transformed
representation 𝑍 is then split along the feature dimension into two
matrices, 𝑍1, 𝑍2 ∈ R𝑛×𝑑𝑚/2:

𝑍1, 𝑍2 = split(𝑍) (4)

An activation function 𝜎 is applied element-wise to 𝑍1 to obtain
the MLP gate 𝜎 (𝑍1). The MLP gate is then multiplied element-wise
with the MLP data 𝑍2 to produce the gated output 𝑍 :

𝑍 = 𝜎 (𝑍1) ⊙ 𝑍2 (5)

Finally, another linear transformation is applied to map 𝑍 back to
the original dimension.

Output = 𝑍𝑊 (6)

where𝑊 ∈ R𝑑𝑚/2×𝑑 is another learnable weight matrix.
The MLP gate 𝜎 (𝑍1) and MLP data 𝑍2 in the MLP can be seen

as a special variant of the spatial gating unit in Transformer-based
models. These two components work together to control the in-
formation flow and capture dependencies between tokens. By ex-
tracting and analyzing the MLP gate and MLP data, we can gain
insights into how the model processes and responds to different
types of input within the module.

2.2 Glitch Token Phenomenon

Tokenizer plays a key role in an LLM as it transforms a continuous
text sequence into a list of discrete values called tokens [39]. The
tokens transformed from the training corpus form the vocabulary
dictionary of LLMs, and the vocabulary dictionary in turn deter-
mines the capacity of LLMs to produce diverse and comprehensive
output. The rapid advancement of LLMs has brought attention to
various anomalous phenomena [10, 11, 19, 20, 22, 24, 40], one of
which is the existence of “glitch tokens”. These tokens exhibit anom-
alies in constructing the expected semantics, and are subsequently
reflected in the abnormal and unexpected decoding in the LLM’s
output.

The glitch token phenomenon, first explored on the Lesswrong
website, refers to anomalous tokens such as “SolidGoldMagikarp”
and “petertodd” that cause unexpected and inaccurate results in
language models like GPT-2 and GPT-J [26, 28, 29, 32]. Subsequent
research examined the characteristics and instability of these to-
kens, revealing that even subtle changes in prompts can lead to
significant differences and hallucinations in the generated results.
The discovery of “polysemous” tokens, which produce different
responses to repeated requests, further highlighted the prevalence
and variability of the glitch token phenomenon in LLMs [27].

Recently, Li et al. [21] systematically investigated the glitch to-
kens with a proposed taxonomy covering their types and symptoms.
They proposed three tasks, namely repetition, length and spelling,
in their study to recognize glitch tokens. Their observation of the
clustering distribution of glitch tokens in the word embedding
spaces offers a novel perspective on the automatic identification
of glitch tokens, making systematic detection feasible in LLMs
containing billions, or even tens of billions of parameters.

The glitch token phenomenon uncovers the limitations and in-
stability of LLMs when processing specific tokens. In this work,
we aim to conduct a systematic and in-depth investigation of this
phenomenon to gain a deeper understanding of the internal mecha-
nisms of these models. This will provide valuable insights that can
contribute to enhancing the robustness and reliability of LLMs in
future applications.

3 EMPIRICAL STUDY

Our empirical study aims to explore an intuitive method for detect-
ing glitch tokens. To this end, we investigate the differences in the
model’s behaviors when processing glitch tokens versus normal
tokens. Two research questions are raised to guide the study:
• RQ1 (Characteristics): What differences are exhibited be-

tween glitch tokens and normal tokens at the structural

level of an LLM?

• RQ2 (Ubiquity): Are the differences discovered in RQ1

prevalent in most LLMs?

To address the two RQs, we investigate the internal mechanisms
of LLMs by analyzing the status of each layer in the transformer
forward process of prediction. This involves examining the data
flow of the intermediate layers as the model processes inputs.

3.1 Experiment Setup

To better understand the impact of glitch tokens on the model’s
internal output generation process, we conduct a series of experi-
ments on the Llama-2-7b-chat model [36], shortly written as Llama2.
Llama2 is a language model based on the Llama architecture. In
our experiments, we set the temperature to 0 to eliminate random-
ness and ensure consistency in the model’s responses. All other
configurations are default.

We employ a unified approach to determine whether each token
is glitchy or normal in this study based on existed definition of
glitch tokens [12]. While the symptoms of glitch tokens may vary
across different tasks, we consistently utilize a repetition task to
construct input sequences for glitch token identification.

In the context of our work, a repetitive task refers to a specif-
ically designed experimental procedure to test the fidelity of a
language model in reproducing input tokens. This task is utilized
primarily for the identification and categorization of tokens based
on their performance when repetitively prompted. Specifically, the
repetitive task involves the following steps:

(1) Formulating a prompt that requires the model to duplicate
a specific token. The typical prompt structure is, “Can you
repeat the token ‘{𝑡𝑜𝑘𝑒𝑛}’ and return it back to me?” This
format is deliberately chosen to minimize contextual influ-
ence and focus purely on the token reproduction capability
of the model.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USAZhibo Zhang, Wuxia Bai, Yuxi Li, Mark Huasong Meng, Kailong Wang, Ling Shi, Li Li, Jun Wang, and Haoyu Wang

(a) Attention Pattern

0 0.2 0.4 0.6 0.8 1

Glitch Tokens

Normal Tokens

F
re

q
u

en
cy

0.16

0.00

MLP Data

(b) MLP Status

PCA dim2

P
C

A
 d

im
1

PCA dim2

P
C

A
 d

im
1

MLP Gate

Figure 1: The distribution of attention patterns and MLP

status for glitch tokens (shown in red color) and normal

tokens (in blue color) in Llama2 model

(2) Submitting the prompt to the model, which is configured by
setting the temperature parameter to zero.

(3) Observing and analyzing the model’s output to determine
whether it accurately reproduces the input token. The output
is deemed successful if the model returns the exact token as
requested; otherwise, the token is classified as a glitch token.

We traverse all the 32,000 tokens of the Llama2 model and even-
tually identify 6,425 glitch tokens from the entire vocabulary. To
precisely capture intermediate layer outputs within the model, we
resort to a transformer mechanistic interpretability tool named
Transformer-lens [30]. Its hook technique enables real-time access
of the activation values at all layers and allows code insertion into
specific intermediate layers of the model. In this study, we insert
hooks into all intermediate layers during the first forward of the
tested model. This approach is chosen because the first forward
comprehensively reflects the model’s understanding of the input
sequence and highlights the differences between normal and glitch
tokens.

We select two key features to represent the model’s internal out-
put, i.e., attention patterns and MLP status. The attention patterns
capture the relative importance and relationships between tokens,
while MLP status is composed of MLP gate and MLP data (Sec-
tion 2.1), providing insights on how the model synthesizes and
modulates new representations within the MLP module.

3.2 RQ1: Glitch Token Characteristics

We compare the extracted intermediate results of Llama2 model
when processing prompts containing normal tokens and glitch to-
kens and observe significant disparity in attention patterns and
MLP status. The distribution of attention patterns for glitch tokens
in some attention heads differs significantly from that of normal to-
kens. To quantitatively analyze these differences, we randomly sam-
ple normal tokens in size of the same number as the pre-identified
glitch tokens. To analyze the attention patterns, we create two sets
of prompts: one containing 6,425 prompts with glitch tokens and
another containing 6,425 prompts with normal tokens. We then
compute the frequency distribution of attention patterns generated
by these prompts, categorizing them into different value ranges.
We visualize the results using a histogram, as shown in Figure 1 (a).
The attention patterns of normal tokens (shown in blue color) gen-
erally cluster around lower ranges and exhibit a relatively smooth
distribution. In contrast, the attention patterns for glitch tokens (in
red color) display a comparably divergent and chaotic distribution.

Furthermore, the distribution characteristics of glitch tokens in
the MLP status show deviations compared to normal tokens. Due
to the high dimension of MLP status values, we cannot visualize
them in the same method used for attention patterns. Instead, we
resort to PCA algorithm to convert the captured MLP status, i.e.,
MLP gate and MLP data, to two dimension values. We present the
distribution of MLP gate and MLP data in scatter plots, as shown
in Figure 1 (b). It can be observed that both two representations of
MLP status for normal tokens tend to cluster towards a centroid,
forming a relatively dense and bounded distribution. In contrast,
the MLP status of glitch tokens are highly dispersed and scattered.

Finding 1

Llama2 shows a significant disparity in attention patterns and
MLP status when dealing with glitch tokens and normal tokens.

To illustrate the anomalies across layers, we resort to the Wasser-
stein distance [38] to measure the magnitude of the differences in
the intermediate layers outputs produced by normal and glitch
tokens, and thereby reveal the distinctions in the model’s inter-
nal mechanisms when processing these two groups of tokens. In
this study, a larger Wasserstein distance indicates a greater dis-
tributional difference. Figure 2 shows the Wasserstein distance in
attention patterns and MLP status between normal and glitch to-
kens across different layers of the Llama2 model. We find that the
differences caused by normal and glitch tokens per layer are not
uniformly distributed. The attention patterns and MLP status ex-
hibit greater differences in the downstream layers closer to the
output, e.g., layers 19-31. This finding suggests that the impact of
glitch tokens, although may result in negligible erroneous results
in front layers, is amplified along with the propagation, leading to
unexpected outputs in the end.

Finding 2

The anomalous intermediate results caused by glitch tokens
are not uniformly distributed across all layers of the model but
are concentrated and amplified in specific key layers.

3.3 RQ2: Ubiquity

In order to verify whether our previous findings exist in other
LLMs, two additional LLMs, namely Qwen-7B-Chat model and
Mistral-7B-Instruct model (shortly as Qwen and Mistral), are se-
lected to complement our empirical study. As shown in Figure 3,
the experimental results on these two models are similar to those
of Llama2. The attention patterns of glitch tokens and normal to-
kens exhibit inconsistent distribution. For example, the attention
patterns of normal tokens mainly fall within the range of [0, 0.2]
in the Qwen model, while the attention patterns of glitch tokens
show a different shape and concentrates in the range of [0.8, 1].
Such inconsistency can also be observed in the Mistral model, evi-
denced by the attention values of normal tokens and glitch tokens
primarily approximating around 0.5 and 0.7, respectively. In terms
of MLP status, the intermediate layers tend to produce outputs in a
centroid-based cluster for normal tokens. However, the MLP status
values of glitch tokens are overall chaotic and disseminated.

GlitchProber: Advancing Effective Detection and Mitigation of Glitch Tokens in Large Language Models ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

(a) Attention Pattern (b) MLP Gate (c) MLP Data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Wasserstein Distance
0.0025

0.0020

0.0015

0.0010

0.0005

0.0000
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.025

0.020

0.015

0.010

0.005

0.000

0.040

0.035

0.030

layer number layer number layer number

Figure 2:Wasserstein distance of the probability distributions between glitch tokens and normal tokens in different intermediate

layers of Llama2 model

(a) Attention Pattern

MLP Gate MLP Data

 0 0.2 0.4 0.6 0.8 1

Glitch Tokens Normal Tokens

(b) MLP Status

Qwen-7B-Chat

Fr
eq

ue
nc

y

PCA dim2

PC
A

di
m

1

0.15

0.00

PCA dim2

PC
A

di
m

1

(c) Attention Pattern
 0 0.2 0.4 0.6 0.8 1

Glitch Tokens Normal Tokens

Mistral-7B-Instruct

Fr
eq

ue
nc

y

0.00

0.15

MLP Data
(d) MLP Status

PCA dim2

PC
A

di
m

1

PCA dim2

PC
A

di
m

1

MLP Gate

Figure 3: The example distribution of attention patterns,MLP

gate and MLP data for glitch tokens (shown in red color) and

normal tokens (in blue color) in Qwen-7B-Chat and Mistral-

7B-Instruct.

Finding 3

We identify similar differences exhibited between normal and
glitch tokens at the intermediate layers of different LLMs.

The findings of RQ1 provide insights for the subsequent detection
and fix of glitch tokens, while the finding in RQ2 offers factual
evidence for the broad application of our approach in LLMs.

4 METHODOLOGY

Based on the findings from our empirical study, we propose the
GlitchProber algorithm, which aims to achieve automatic detec-
tion and fix of glitch tokens by analyzing the internal activation
states of LLMS. Our approach consists of two main ideas:

(1) Leveraging the differences in model activation values when
processing glitch tokens and normal tokens to achieve rapid
screening of glitch tokens. By designing an anomaly detection
algorithm, we can identify and label potential glitch tokens
based on their activation features extracted from specific layers,
which we refer to as key layers (detailed in Section 4.3). These
key layer features are crucial for detecting glitch tokens.

(2) Fixing errors caused by glitch tokens by adjusting the model’s
intermediate results. We designed a series of experiments where
we automatically adjusted the output values of the model’s
intermediate layers and observed the impact on the final output.

As elucidated in Section 3.2, glitch tokens in the model predom-
inantly affect the downstream layers close to the output, notably
impacting attention patterns and MLP status in specific key layers.
This revelation is instrumental in shaping our approach of Glitch-
Prober. By strategically focusing our efforts on key layers, we
can significantly reduce computational overhead while achieving
a comparable level of detection and fix efficacy to traversing all
layers. Thus, this approach not only optimizes the efficiency of our
methods but also ensures that our interventions are targeted where
they are most needed. For a detailed introduction to the selection
strategy of key layers, please refer to Section 4.3.

Based on these ideas, we designed GlitchProber, which in-
tegrates detection and fix algorithms. GlitchProber’s detection
algorithm identifies and locates glitch tokens causing model output
errors by analyzing intermediate layer activation states. It randomly
samples a subset of tokens from the vocabulary, tests them using
repetitive tasks, and extracts activation features from key layers.
These features undergo dimensionality reduction and are labeled
based on repetitive task outcomes. A classifier is then trained with
the labeled data to assess unknown tokens. Finally, the remaining
tokens are detected individually using the trained SVM classifier,
and predictions are verified through repetitive tasks.

GlitchProber’s fix algorithm corrects the anomalous activa-
tion patterns of glitch tokens by adjusting activation values in the
model’s intermediate layers, eliminating their negative impact on
the model output. It first calculates activation statistics of normal
tokens in key layers and identifies neurons that are consistently
activated or silent in most normal tokens. Then, it compares these
neurons’ activations between normal and glitch tokens, calculat-
ing suppression ratio coefficients for anomalous activations and
activation values to promote silent neurons. Finally, it rectifies
the activation values of glitch tokens in key layers based on these
coefficients and values, automatically fixing the glitch tokens.
4.1 Detecting Glitch Tokens via GlitchProber

GlitchProber identifies and detects glitch tokens that cause model
output errors by analyzing the intermediate layer activation states
of Transformer language models when processing tokens. The main
workflow of the algorithm is shown in Figure 4. The detection al-
gorithm of GlitchProber consists of three main steps: feature
extraction and dimension reduction, SVM-based glitch token classi-
fier, and glitch token identification and validation.

4.1.1 Feature Extraction and Dimension Reduction. Glitch-
Prober adopts a random sampling strategy to select samples from

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USAZhibo Zhang, Wuxia Bai, Yuxi Li, Mark Huasong Meng, Kailong Wang, Ling Shi, Li Li, Jun Wang, and Haoyu Wang

fields später Ссылки ást

Token Vocabulary Repetitive
Task

Sample
Tokens

Input
Template

Open-Source LLM
très ниче Found Tele

Open-Source LLM

Embedding
Forward 1
Forward 2

Forward n

Other
Tokens

N G N

N N N

N N G

Labels

Labeling

Training
Set

Training
Classifier

GN NN NG

NNGG

Post-processing

Data Collection

Select Key
Layers

Hook
Attention
Pattern

MLP Gate

MLP Data

Features PCA

Embedding Forward 1

Attention
Q K V

MLP gate

MLP data

Layer 0

Attention
Q K V

MLP gate

MLP data

Layer 1

Detailed Forward 1 Select Key
Layers

…

……

…

…

…

…

… … …

…
Layer N-1

MLP gate

MLP data

Attention
Q K V

Figure 4: GlitchProber workflow for detecting glitch tokens. The red arrows represent the data flow during the training

process, while the black arrows represent the data flow during the detection process.

the model’s token vocabulary 𝑉 to form the sample set 𝑆 . The
choice of sampling rate 𝛾 needs to balance between sample size
and computational efficiency. A larger 𝛾 leads to a larger sample
size and more accurate detection results but also incurs higher
computational costs. Conversely, a smaller 𝛾 results in a smaller
sample size and faster computation but may affect the detection
performance. Through experiments, we determined that when 𝛾 is
in the range of [0.1, 0.3], GlitchProber achieves a good balance
between detection performance and efficiency.

GlitchProber uses a unified repetitive task to construct input
sequences for glitch token identification in the sample set 𝑆 . For
tokens in the sample set 𝑆 , the algorithm assigns corresponding
category labels according to the output results of the repetitive task.
At the same time, we extract the attention pattern, MLP gate and
MLP data features in themodel’s first forward process. However, the
dimension of the original feature tensors is high, and directly using
them to train the classifier would lead to excessive computational
costs. To improve computational efficiency, we adopt a dimension
reduction strategy. The PCA algorithm [1] is applied to reduce
the dimension, mapping the original high-dimensional features
to a low-dimensional subspace while maximally preserving the
discriminative information of the features. Through experiments,
we found that when the dimension 𝑃 of the reduced features is
in the range of [50, 200], a good balance between computational
efficiency and information retention can be achieved. Therefore,
we set 𝑃 = 75 as the default dimension reduction parameter.

4.1.2 SVM-basedGlitch TokenClassifier. GlitchProber trains
an SVM classifier using the low-dimensional feature representation
matrix 𝐹 of the sample set 𝑆 and the corresponding category labels.
The trained SVM classifier will be used for subsequent glitch assess-
ment of unknown tokens. SVM is a binary classification algorithm
that is particularly suitable for problems with high-dimensional fea-
ture spaces, which aligns well with the characteristics of the glitch
token detection task in GlitchProber. Besides, SVM has higher
computational efficiency and shorter training time when handling
high-dimensional features compared to other binary classification
algorithms. That helps achieve rapid real-time detection of glitch
tokens in GlitchProber. Therefore, we adopt SVM as the classifier
in the detection algorithm of GlitchProber.

4.1.3 Glitch Token Identification and Validation. The tokens
in the token vocabulary that were not sampled are individually

detected. The token to be detected is input into the same repetitive
task as in the training phase, and its features attention patterns,
MLP gate, and MLP data are extracted in the model’s first forward
module. Subsequently, the trained SVM classifier is used to make
predictions based on the extracted features.

If a token is predicted as “glitchy”, the algorithm will input
this token into the model and further use the repetitive task to
validate it. If the model can correctly repeat the token, we consider
it as a potential normal token, and the SVM classifier may have
made a false positive prediction. Through this post-processing step,
GlitchProber can effectively reduce the false positive rate of glitch
token detection and improve the precision of detection. Finally,
GlitchProber outputs two sets: the set of glitch tokens 𝐺 and the
set of normal tokens 𝑁 .

Algorithm 1: GlitchProber (Detection)
Input: Token Vocabulary𝑉 ; PCA Dimension 𝑃 ; Sample Rate 𝛾 ;

KeyLayers[]
Output: Glitch token set𝐺 ; Normal token set 𝑁

1 𝑆 ← randomSample(𝑉 ,𝛾) ;
2 foreach Token ∈ 𝑆 do

3 SampleFeatures← hookModel(Token,KeyLayers) ;
4 SampleLabels← validateGlitch(Token) ;
5 end

6 𝐹 ← PCA(SampleFeatures, 𝑃) ;
7 Classifier← trainClassifier(𝐹, SampleLabels) ;
8 foreach Token ∈ 𝑉 do

9 if Token ∉ 𝑆 then

10 Feature← PCA((hookModel(Token,KeyLayers)), 𝑃) ;
11 if classify(Classifier, Feature) == ‘Normal’ then
12 𝑁 ← Token;
13 else

14 if validateGlitch(Token) == ‘Glitch’ then
15 𝐺 ← Token;
16 else

17 𝑁 ← Token;
18 end

19 end

20 end

21 end

4.1.4 Detection Process Algorithm. The pseudocode for the
detection algorithm of GlitchProber is shown in Algorithm 1.

GlitchProber: Advancing Effective Detection and Mitigation of Glitch Tokens in Large Language Models ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

GG G
Open-Source LLM

Glitch
Answer

Correct
Answer

Repetitive
Task

Input
Template

Forward 1

Forward 2

Forward n

…

Modified Forward 1
Modified Forward 2

Modified Forward n

…

Embedding

Modified Forward

MLP gate

MLP data

Other Layers

Attention

Q K V

🔍

 Statistics & Adjust

N N N

Key Layers

Attention

Q K V

MLP gate

MLP data

Modified MLP gate

Modified MLP data

Figure 5: GlitchProber workflow for fixing glitch tokens.

Initially, the algorithm samples a subset of tokens (𝑆) from the
vocabulary (𝑉) based on a predefined sampling rate (𝛾) (line 1). For
each token in this subset, the algorithm extracts relevant features
using a transformer model over specified key layers and assigns
labels indicating whether each token is glitchy (lines 2-5).

Following the feature extraction, the algorithm applies PCA to
reduce the dimension of these features to a lower-dimensional space
(𝑃) (line 6). The reduced feature set (𝐹) is then used to train a SVM
classifier with the assigned glitch labels (line 7).

For tokens not included in the initial sample, the algorithm uses
the trained SVM classifier to predict whether each token is normal
or a glitch (lines 8-12). Tokens classified as glitches will undergo
a further validation step to confirm their status, effectively mini-
mizing the false positive rate (lines 14-18). Finally, the algorithm
compiles and outputs two sets, namely glitch token set (𝐺) and
normal token set (𝑁).

4.2 Fixing Glitch Tokens via GlitchProber

We further explore the possibility of correcting the anomalous
activation patterns of glitch tokens to normal patterns by adjusting
the activation values of the model’s intermediate layers, thereby
eliminating their negative impact on the model output. Based on the
idea of adjusting neuron activation values to eliminate the influence
of glitch tokens, we focus on two types of neurons in normal tokens,
i.e., the neurons that are activated in the vast majority of normal
tokens, and the neurons that are not activated in any normal tokens.
Then we compare the differences in activation values of these key
neurons between normal tokens and glitch tokens. By simulating
those normal activation patterns, we achieve adaptively adjustment
of the activation values of glitch tokens. The overall approach is
illustrated in Figure 5.

4.2.1 Normal TokenActivationValue Statistics. GlitchProber
first randomly samples a subset of normal tokens, i.e., 𝑁 ′ ⊂ 𝑁 , to
calculate the activation value distribution of normal tokens in the
target layers. We set the sampling rate to 𝛾 , which is consistent
with the sampling rate in the glitch token detection phase.

For the MLP module in each layer, we calculate the activation
statistics of the tokens in the normal token set 𝑁 ′. We define two

sets of neuron indices as 𝑁𝑒𝑢𝑛↑ and 𝑁𝑒𝑢𝑛↓ based on their activa-
tion patterns, where 𝐴𝑐𝑡 [𝑖] represents the activation value of the
𝑖-th neuron in the MLP module, and𝑚 is the predefined threshold.

𝑁𝑒𝑢𝑛↑ = {𝑖 |𝐴𝑐𝑡 [𝑖] > 𝑚 for over 99% of tokens in 𝑁 ′} (7)

𝑁𝑒𝑢𝑛↓ = {𝑖 |𝐴𝑐𝑡 [𝑖] ≤ 𝑚 for all tokens in 𝑁 ′} (8)

𝑁𝑒𝑢𝑛↑ denotes the set of key neurons that exhibit high activation
levels, surpassing predefined threshold𝑚, across sample token set
𝑁 ′. Given that activated neurons constitute a small proportion of
the total neurons, we consider a neuron to be a key neuron if it is
activated in over 99% of the tokens. Conversely, 𝑁𝑒𝑢𝑛↓ represents
the set of key neurons that exhibit consistently low activation
levels, falling below𝑚. We consider a neuron to be a key neuron in
𝑁𝑒𝑢𝑛↓ if its activation level remains below the threshold𝑚 for all
tokens in 𝑁 ′. These neurons can be considered as the key features
for suppressing noise, as they are consistently inactive for normal
tokens. By identifying these two sets of neuron indices based on
their activation patterns, we can create a profile of the expected
behavior of normal tokens at each MLP module. Those methods
ensure the recorded neurons take the most informative features
when we mitigate the influence of noise and irrelevant information
caused by glitch tokens.

Note that we only adjust the activation values of the MLP mod-
ule and not the attention patterns. Attention patterns capture the
relative importance between tokens, and modifying them may dis-
rupt token dependencies and introduce noise. In contrast, MLP
activation values reflect the model’s understanding of each token
independently, and adjusting these values has less impact on token
relationships. By only adjusting MLP activation values, we aim to
fix glitch tokens without introducing additional noise.

4.2.2 Activation Value Adjustment. When the hooked model
processes detected glitch tokens, GlitchProber intervenes in this
process, making trend-based adjustments to the neurons identi-
fied by 𝑁𝑒𝑢𝑛↑ and 𝑁𝑒𝑢𝑛↓. For neurons in 𝑁𝑒𝑢𝑛↑ that should be
activated but have insufficient activation in glitch tokens, the algo-
rithm uses 𝛽 as an amplification factor to promote their activation.
Conversely, for neurons in 𝑁𝑒𝑢𝑛↓ that should be suppressed but
are abnormally activated in glitch tokens, the algorithm uses 𝛼 as a
reduction factor to suppress their anomalous activation. The factors
𝛽 and 𝛼 are named adjustment factors, which play a crucial role
in the glitch token fixing process. For the calculation of 𝛽 and 𝛼 ,
we first calculate the average activation value difference Δ𝐴𝑐𝑡↑ of
glitch tokens relative to normal tokens on highly activated neurons
(𝑁𝑒𝑢𝑛↑), and the average activation value ratio Δ𝐴𝑐𝑡↓ on lowly
activated neurons (𝑁𝑒𝑢𝑛↓).

Δ𝐴𝑐𝑡↑ =
1

|𝑁𝑒𝑢𝑛↑ |

∑︁
𝑖∈𝑁𝑒𝑢𝑛↑

(𝐴𝑐𝑡normal [𝑖] −𝐴𝑐𝑡glitch [𝑖]) (9)

Δ𝐴𝑐𝑡↓ =
1

|𝑁𝑒𝑢𝑛↓ |

∑︁
𝑖∈𝑁𝑒𝑢𝑛↓

(
𝐴𝑐𝑡glitch [𝑖]
𝐴𝑐𝑡normal [𝑖]

)
(10)

Subsequently, through linear transformation and range restric-
tion, the algorithmmapsΔ𝐴𝑐𝑡↑ andΔ𝐴𝑐𝑡↓ to appropriate numerical
intervals to obtain the values of 𝛽 and 𝛼 , respectively.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USAZhibo Zhang, Wuxia Bai, Yuxi Li, Mark Huasong Meng, Kailong Wang, Ling Shi, Li Li, Jun Wang, and Haoyu Wang

𝛽 = 𝑘1 · Δ𝐴𝑐𝑡↑ + 𝑏1 (11)

𝛼 = 𝑘2 · Δ𝐴𝑐𝑡↓ + 𝑏2 (12)
The constants 𝑘1, 𝑏1, 𝑘2, and 𝑏2 are derived through an adaptive

process tailored to the specific dynamics of each model. A set of
default values is provided, which can be adjusted based on empirical
data to optimize the correction process for different types of models.
They are crucial for ensuring 𝛽 and 𝛼 effectively modulate neuron
activations while maintaining system stability and performance.

After the adjustment of the MLP activation values is completed,
we input the corrected activation values back into the subsequent
layers, allowing the model to continue the forward propagation
until the final fixed result is output. This process corrects on each
token in the detected glitch token set 𝐺 .

Algorithm 2: GlitchProber (Fix)
Input: Glitch token set𝐺 ; Normal token set 𝑁 ; Sample Rate 𝛾 ;

Threshold𝑚; KeyLayers[]
1 𝑁 ′ ← randomSample(𝑁,𝛾) ;
2 𝑁𝑒𝑢𝑛↑, 𝑁𝑒𝑢𝑛↓ ← statisticsNeuron(𝑁 ′,𝑚) ;
3 𝛽 ← statisticsBeta(𝑁 ′, 𝑁𝑒𝑢𝑛↑) ;
4 𝛼 ← statisticsAlpha(𝑁 ′, 𝑁𝑒𝑢𝑛↓) ;
5 foreach Token ∈ 𝐺 do

6 for Layer ∈ KeyLayers do
7 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 ← hookModel(Token, Layer) ;
8 foreach Neuron ∈ 𝑁𝑒𝑢𝑛↑ do
9 𝐴𝑐𝑡 [Neuron] ← 𝐴𝑐𝑡 [Neuron] + 𝛽 ;

10 end

11 foreach Neuron ∈ 𝑁𝑒𝑢𝑛↓ do
12 𝐴𝑐𝑡 [Neuron] ← 𝐴𝑐𝑡 [Neuron]/𝛼 ;
13 end

14 hookModel(Token, Layer) ← 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛;
15 end

16 end

4.2.3 Fixing Process Algorithm. Based on Section 4.2.2, we
present the pseudocode for the fix algorithm of GlitchProber
in Algorithm 2. The algorithm begins by sampling a subset (𝑁 ′)
of normal tokens from the full set of normal tokens (𝑁) (line 1).
Then it computes the statistical distribution of activation values
across key neurons in the subset, distinguishing 𝑁𝑒𝑢𝑛↑ and 𝑁𝑒𝑢𝑛↓
(line 2). After that the algorithm calculates the adjustment factors
𝛽 and 𝛼 for the identified key neurons (line 3-4).

For each glitch token in the set𝐺 , the algorithm iteratively ap-
plies these adjustments across specified layers (i.e., KeyLayers) of
the model (lines 5-7). Neurons in 𝑁𝑒𝑢𝑛↑ have their activation val-
ues increased by 𝛽 , amplifying their response to mimic normal
activation patterns (lines 8-10). Conversely, neurons in 𝑁𝑒𝑢𝑛↓ have
their activation values reduced by dividing by 𝛼 , suppressing any
abnormal activations (lines 11-13). Each adjusted activation is rein-
tegrated into the model’s processing flow, allowing it to continue
with forward propagation with the corrected values (line 14).

4.3 Key Layers Selection

In the design of our GlitchProber’s detection and fix algorithms,
we focused on exploiting the attention pattern and MLP status fea-
tures within certain key layers. The rationale behind selecting these

key layers stems primarily from our empirical findings outlined in
Finding 2 (Section 3.2), which highlighted that glitch tokens predom-
inantly affect the model’s downstream layers closer to the output.
For instance, in Llama2, this pertains to layers 19 to 31. Further
refining our selection, we encountered a counter-intuitive discov-
ery: modifying features in layers exceedingly close to the output
paradoxically diminished the effectiveness of our fix algorithms.

The layers preceding the final output are crucial for tailoring
responses based on preceding computations; alterations in these
layers can disrupt representational balances, leading to degraded
performance. In our approach for Llama2, we designated layers 19 to
28 as key layers, optimally positioned in themiddle to lower sections
of the model’s architecture. This strategic placement ensures that
our interventions effectively mitigate the effects of glitch tokens
while preserving the model’s robustness.

5 EVALUATION OF GLITCH TOKEN

DETECTION

5.1 Experiment setup

Experiment Environment. All experiments are performed on a
workstation with Ubuntu 22.04.3 LTS and 250GB memory, and 2
A100 GPU with 80GB memory each.
LLM Selection. We thoroughly evaluated our proposed method
using a diverse set of computational models. We selected five widely
recognized, open-source models, including Llama-2-7b-chat [36],
Mistral-7B-Instruct-v0.1 [18], Qwen-7B-Chat [5], Gemma-2b-it [14],
and Yi-6B-Chat [3]. These models served as the subjects for our
in-depth analysis, allowing us to assess the versatility and effective-
ness of our method across various real-world applications. Table 1
provides an overview of these models’ parameters.
Evaluation of Detection Baselines. To evaluate the performance
of GlitchProber, we compared it with two implemented bench-
mark schemes and a recent testing method, GlitchHunter.

(1) Exhaustive Search: Each token in the token list is individually
fed into the model, which performs tasks such as paraphrasing,
spelling, and length calculation for each token.

(2) Rule-based Random Sampling: First, randomly select half
of the tokens from the language model to form a candidate set.
Since common English words typically do not become glitch
tokens, use the Natural Language Toolkit (NLTK) to remove
high-frequency English words from the candidate set. The re-
maining tokens are considered potential glitch tokens.

(3) GlitchHunter: This is the state-of-the-art automated detec-
tion method for glitch tokens [21].

Evaluation Metrics of Detection. For efficiency evaluation, we
consider the Time Cost required to process all glitch tokens in
the complete token list of a model. For GlitchProber, it encom-
passes the total duration including feature extraction, classifier
training, identification and validation. For effectiveness evaluation,
we consider True Positive, Precision, Recall and F1-Score.
Evaluation Settings. In our detection experiments, we evaluated
the performance of GlitchProber with SVM regularization pa-
rameter and degree[33, 37] set to 𝐶 = 1, 𝑑𝑒𝑔𝑟𝑒𝑒 = 3. We employ
𝛾 = 0.1 for random sampling and principal components to 𝑃 = 75

GlitchProber: Advancing Effective Detection and Mitigation of Glitch Tokens in Large Language Models ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Table 1: Summary of models in evaluation

Model Name

Number of

Parameters

Vocabulary

Size

Hidden

Layers

Intermediate

Size

Attention

Heads

Llama-2-7b-chat 6.74B 32,000 32 11,008 32
Mistral-7B-Instruct-v0.1 7.24B 32,000 32 14,336 32
Qwen-7B-Chat 7.72B 151,936 32 22,016 32
Gemma-2b-it 2.51B 256,000 18 16,384 8
Yi-6B-Chat 6.06B 64,000 32 11,008 32

Table 2: Time cost comparison of GlitchProber and other

baselines on different LLMs.

Test Model Exhaustive Search GlitchHunter GlitchProber (ours)

Llama-2-7b-chat 619min 43s 74min 11s 61min 38s

Mistral-7B-Instruct-v0.1 651min 17s 64min 26s 42min 39s

Qwen-7B-Chat 2,228min 23s 720min 42s 92min 48s

Gemma-2b-it 3,575min 9s 681min 16s 96min 43s

Yi-6B-Chat 974min 4s 825min 25s 140min 57s

Average Time Cost 1,609min 42s 473min 11s 89min 9s

for PCA. For the rule-based random sampling methods, we con-
ducted 100 independent experiments and averaged the results to
obtain statistically significant conclusions. For the GlitchHunter
method, we used the default settings from the original paper [21].

5.2 RQ3 (Efficient Detection): How efficient is

our approach in identifying glitch tokens

across different LLMs?

To evaluate the efficiency of GlitchProber, time overhead and the ac-
curacy comparison results of various methods on five large models
are shown in Table 2 and Table 3.

Our experimental results demonstrate thatGlitchProber reached
a detection efficiency advantage.Meanwhile,GlitchProber achieves
a 100% precision which matches the performance of both Glitch-
Hunter and the exhaustive search benchmark method. This sig-
nifies GlitchProber’s minimal false positive rate. Furthermore,
GlitchProber achieves a recall rate of 64.47%, surpassing Glitch-
Hunter’s 26.52%. The F1-score indicates thatGlitchProber strikes
a fine balance between precision and recall, efficiently detecting
glitch tokens while maintaining high accuracy.

Answer to RQ3

GlitchProber achieves perfect accuracy across all test cases
with low time overhead, exhibiting superior stability and per-
formance in glitch token detection. Its efficiency gains are
primarily attributed to its strategic adoption of small-scale
sampling and intermediate layer feature extraction techniques,
significantly enhancing detection efficacy.

5.3 RQ4 (Ablation Study): How do the different

components of GlitchProber affect the

detection results?

To assess the importance of the components in GlitchProber, we
performed an ablation study across five models. We developed two
variants: GlitchProber-No-PCA and GlitchProber-No-Post.
GlitchProber-No-PCA omits the PCA during feature processing,
while GlitchProber-No-Post eliminates the final token validation
steps in the original GlitchProber. The comprehensive results are
shown in Table 4.

Table 3: Performance comparison of GlitchProber and

other baselines on different LLMs

Test Model Metric Rule-based

Random Sampling

GlitchHunter GlitchProber

Llama-2-7b-chat

TP 2,936 1,955 4,446
Precision 24.74% 100.00% 100.00%
Recall 45.70% 30.43% 69.22%
F1-score 0.3210 0.4724 0.8181

Mistral-7B-Instruct-v0.1

TP 1,288 1,233 1,873
Precision 11.44% 100.00% 100.00%
Recall 46.35% 44.37% 67.41%
F1-score 0.1836 0.6147 0.8053

Qwen-7B-Chat

TP 15,419 4,031 19,366
Precision 21.04% 100.00% 100.00%
Recall 50.24% 14.42% 63.08%
F1-score 0.2966 0.2521 0.7736

Gemma-2b-it

TP 13,777 3,240 17,387
Precision 11.30% 100.00% 100.00%
Recall 49.27% 10.56% 62.18%
F1-score 0.1838 0.1910 0.7668

Yi-6B-Chat

TP 3,215 2,662 4,900
Precision 13.10% 100.00% 100.00%
Recall 39.67% 32.84% 60.45%
F1-score 0.1969 0.4944 0.7535

Average Performance
Precision 16.32% 100.00% 100.00%
Recall 46.24% 26.52% 64.47%
F1-score 0.2364 0.4049 0.7835

Table 4: Comparison of performance and memory usage for

GlitchProber with different feature configurations across

various language models.

Model Metrics GlitchProber GlitchProber-No-Post GlitchProber-No-PCA

Llama-2-7b-chat F1-Score 0.8529 0.6097 –
Memory 103.71GB 101.22GB 250.00GB

Mistral-7B-Instruct-v0.1 F1-Score 0.8652 0.5429 –
Memory 107.11GB 102.67GB 250.00GB

Qwen-7B-Chat F1-Score 0.8854 0.5510 –
Memory 109.03GB 101.20GB 250.00GB

gemma-2b-it F1-Score 0.8143 0.4226 –
Memory 131.04GB 127.96GB 250.00GB

Yi-6B-Chat F1-Score 0.8718 0.4507 –
Memory 83.32GB 82.76GB 250.00GB

Note: ‘–’ denotes incomplete experiment due to exceeding the maximum memory of our server of 250.00GB.

Table 4 offers a detailed comparative analysis of GlitchProber
alongside its variants. With respect to the F1-score, GlitchProber
markedly surpasses GlitchProber-No-Post, demonstrating av-
erage improvements of 0.32. These findings underscore the vital
importance of implementing robust post-classification enhance-
ments to boost overall performance. Furthermore, the absence of
PCA in GlitchProber-No-PCA leads to substantial increases in
memory usage beyond the maximum capacity of our server, result-
ing in the incompletion of GlitchProber-No-PCA. This starkly
highlights the necessity of dimensionality reduction as a means to
optimize resource allocation and ensure system stability.

Answer to RQ4

The PCA dimensionality reduction and the post-process are
crucial components for GlitchProber. Omitting either of
these components leads to a significant decrease in effective-
ness, undermining the utility of GlitchProber.

6 EVALUATION OF GLITCH TOKEN FIX

6.1 Experiment setup

Evaluation Baselines of Fix. Due to the lack of existing methods
for fixing glitch tokens, we compared GlitchProber with a bench-
mark scheme: a rule-based fix method, to verify its effectiveness.
Specifically, the rule-based fix method does not rely on specific ac-
tivation value differences to determine 𝛼 and 𝛽 . Instead, it directly

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USAZhibo Zhang, Wuxia Bai, Yuxi Li, Mark Huasong Meng, Kailong Wang, Ling Shi, Li Li, Jun Wang, and Haoyu Wang

Table 5: Performance comparison of GlitchProber and

Rule-based method on different models.

Model Metric

Method

Rule-based Fix GlitchProber

Llama-2-7b-chat Repaired Tokens 3,805 4,021
Repair Rate 59.22% 62.58%

Mistral-7B-Instruct-v0.1 Repaired Tokens 359 1,045
Repair Rate 12.92% 37.60%

Qwen-7B-Chat Repaired Tokens 10,645 14,765
Repair Rate 34.68% 48.11%

Gemma-2b-it Repaired Tokens 9,865 13,638
Repair Rate 35.28% 48.77%

Yi-6B-Chat Repaired Tokens 3,390 4,317
Repair Rate 41.83% 53.26%

Average Repaired Tokens 5,613 7,758
Repair Rate 36.79% 50.06%

uses a fixed value to adjust activation values at the same neuron
positions as GlitchProber.
Evaluation Metrics of Fix Experiments. We used two test met-
rics to evaluate the performance of the fix methods: the number of
repaired glitch tokens (Repaired Tokens) and the repair rate (Repair
Rate). The repair rate represents the proportion of glitch tokens
successfully repaired out of all glitch tokens. It is calculated using
the following formula:

Repair Rate =
Repaired Token Number

Total Glitch Token Number
(13)

These two metrics can intuitively reflect the actual effectiveness of
the fix methods.

Evaluation Settings. In our fix experiments, we remain the
same 𝛾 = 0.1 for random sampling and choose the same key layers.
For the threshold, we set𝑚 = 1 to determine 𝑁𝑒𝑢𝑛↑ and 𝑁𝑒𝑢𝑛↓.

6.2 RQ5 (Effective Fix): How effective is our

approach in fixing glitch tokens across

different LLMs?

We compared the performance of the GlitchProber fix algorithm
with the rule-based fix method in terms of repaired tokens and
repair rate under the same conditions to evaluate the effectiveness
of GlitchProber. Table 5 presents the performance comparison
of the two methods across different test models.

The results indicate that although the rule-based fix method uses
fixed 𝛼 and 𝛽 values (𝛼 = 4 and 𝛽 = 1.5) and lacks flexibility, it can
still direct the activation or inhibition of neurons associated with
glitch tokens, achieving a certain degree of fix. This demonstrates
that adjusting neuron activation values to correct the abnormal
behavior of glitch tokens is a viable and effective fix strategy. How-
ever, due to its lack of specificity, the fix effect of this method is
relatively limited. In contrast, GlitchProber precisely calculates 𝛼
and 𝛽 , and selectively adjusts the activation patterns of key feature
neurons, achieving an average repair rate of 50.06% across the five
models, outperforming the rule-based method.

Answer to RQ5

GlitchProber has effectively fixed glitch tokens across five
LLMs. Compared to the rule-based method, its key improve-
ment is the precise calculation of 𝛼 and 𝛽 , allowing better
application to different models.

Table 6: Post process time of GlitchProber using various

SVM parameter configurations (in seconds)

Feature Type

C=0.1

degree=2

C=0.5

degree=2

C=0.5

degree=3

C=1

degree=3

Attn_pattern 1,413.88 1,453.21 1,360.12 1,357.70
MLP_gate 1,407.36 1,458.88 1,436.23 1,445.11
MLP_data 1,473.43 1,541.10 1,579.08 1,581.00
Attn_pattern + MLP_gate 1,410.79 1,438.57 1,444.74 1,472.50
Attn_pattern + MLP_data 1,427.43 1,479.34 1,514.72 1,513.41
MLP_gate + MLP_data 1,453.72 1,504.36 1,546.09 1,530.88
Attn_pattern + MLP_gate + MLP_data 1,444.23 1,471.85 1,502.46 1,500.23

7 DISCUSSION

7.1 Hyperparameters Choice of GlitchProber

In this section, an experiment is conducted to illustrate the selection
process for the principal features in LLMs and the hyperparameters
in SVM. Specifically, the parameters 𝐶 and 𝑑𝑒𝑔𝑟𝑒𝑒 in the SVM’s
polynomial kernel require elucidation. The parameter𝐶 , commonly
referred to as the regularization parameter, controls the trade-off
between achieving a low error on the training data and minimizing
themodel complexity for better generalization to new data. A higher
value of 𝐶 tries to fit the training set as well as possible (higher
model complexity), while a lower value leads to a model that might
not perform as well on the training set but is better at generalizing.
On the other hand, 𝑑𝑒𝑔𝑟𝑒𝑒 pertains to the degree of the polynomial
kernel function and is crucial for defining the complexity of the
decision surface. A higher 𝑑𝑒𝑔𝑟𝑒𝑒 results in more complex decision
boundaries, capable of capturing more intricate patterns in the data.
However, this also increases the risk of overfitting, particularly in
scenarios with noise and limited data samples [33, 37].

As depicted in Table 6, no significant differences are observed in
the time consumption across various groups of hyperparameters
and features. Therefore, the average F1-score, as illustrated in Fig-
ure 6, is considered for comparison. The comparison of the F1-score
without post-processing is chosen as it more accurately reflects the
inherent effectiveness of the different features and hyperparame-
ters. Figure 6 clearly shows that the hyperparameter group in the
lower right corner achieves the highest F1-score of 0.6117 without
post-processing, which is noteworthy. Consequently, 𝐶 = 1 and
degree = 3 are selected as the hyperparameters for SVM. All three
features are chosen for the detection process, and two MLP-based
features are chosen for the fix process.

We further examine the rationale behind the selection of the
hyperparameter 𝛾 , which determines the sampling rate from the
model’s token vocabulary 𝑉 for the sample set 𝑆 in GlitchProber.
The parameter 𝛾 is pivotal in balancing detection accuracy against
computational efficiency. Empirical analysis, as shown in Table 7,
demonstrates that a 𝛾 increment from 0.1 to 0.3 improves recall
from 0.6922 to 0.7457 and raises the F1 score from 0.8181 to 0.8543,
with a reasonable increase in computational time. However, further
increasing 𝛾 to 0.7, while boosting recall and F1 scores to 0.7812
and 0.8772 respectively, significantly extends processing times to
over 100 minutes. Therefore, a 𝛾 range of 0.1 to 0.3 is recommended,
as it optimally balances performance gains with computational effi-
ciency, ensuring that GlitchProber remains practical for operational
use.

GlitchProber: Advancing Effective Detection and Mitigation of Glitch Tokens in Large Language Models ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Attention pattern

C=0.1
degree=2

C=0.5
degree=2

C=0.5
degree=3

C=1
degree=3

MLP gate

MLP data

Attention pattern
+ MLP gate

MLP gate
+ MLP data

Attention pattern
+ MLP data

Attention pattern
+ MLP gate
+ MLP data

Feature Type

Figure 6: Different Feature Combination Comparison for

GlitchProber

Table 7: Model performance across different gamma values

on Llama2 model

Sampling Rate 𝛾 = 0.1 𝛾 = 0.2 𝛾 = 0.3 𝛾 = 0.5 𝛾 = 0.7
Precision 100% 100% 100% 100% 100%
Recall 69.22% 72.81% 74.57% 76.65% 78.12%
F1 Score 81.81% 84.26% 85.43% 86.78% 87.72%
Time 61min 38s 68min 14s 74min 30s 86min 52s 100min 41s

Table 8: Performance comparison of original and modified

model using Finetuning and GlitchProber for Mitigation

Dataset Original Model GlitchProber Finetuning

GSM8K 0.315 0.301 0.238
HumanEval pass@1 0.129 0.103 0.009
HumanEval pass@5 0.190 0.161 0.024
MMLU 0.453 0.417 0.229

7.2 Rationale of GlitchProber versus

Exhaustive Search

In the context of exhaustive search mechanisms, LLMs are required
to generate, on average, twenty tokens at a zero temperature setting
for every individual token processed. This computational method
is both intensive and inefficient. Conversely, the implementation
of GlitchProber necessitates merely a single forward processing
step to capture the intermediate features of the LLM for each token.
This approach substantially reduces 95% of redundant operations
of those required by the traditional exhaustive search method.

7.3 Glitch Token Mitigation By Fine-tuning

GlitchProber adaptively modifies the process of model calcula-
tion without altering the model parameters, thereby minimizing the
mitigation impact on model performance and preserving the basic
abilities of LLMs. In contrast, we also construct a dataset with Q&A
for the repetition task and attempt to mitigate the glitch token phe-
nomenon by fine-tuning LLMs. However, compared with Glitch-
Prober, fine-tuning LLMs alters the parameters of the model, po-
tentially compromising its basic abilities. For example, we fine-tune

the Llama-2-7b-chat with a dataset containing 3,000 Q&A pairs of
repetition tasks. To evaluate the model’s basic skills, we use three
widely accepted datasets namely GSM8K [8], HumanEval [6], and
MMLU [17].

Detailed results presented in Table 8 indicate that the model’s
ability in code writing and solving math problems post Glitch-
Prober is comparable with the original model. and significantly
better compared to the fine-tuned model, which notably diminished
the basic abilities of original model.

7.4 Threats to Validity

Internal. Our primary concern involves the selection and compu-
tation of hyperparameters in both the detection and fixing phases
of GlitchProber. For the detection phase, we detail the rationale
behind our choices through an experiment described in Section 7.1.
Various feature types and hyperparameters for the SVM consis-
tently outperform the established baselines. In the fixing phase, the
linear computation of 𝛼 and 𝛽 proves untenable. Enhanced discus-
sion and manipulation of the activation value are recommended as
future research directions.
External. Threats are associated with our experimental framework.
For the performance of glitch tokens in intermediate layers, we
experiment on three LLMs with different parameters and vocab-
ulary sizes. Based on these findings, GlitchProber experiment
on five different LLMs, showing its generalizability. Furthermore,
as GlitchProber is required to access the intermediate data of
the LLM, GlitchProber is only applicable to open-source LLMs.
The transferability of GlitchProber from open-source LLMs to
closed-source LLMs like GPT-4 could further be explored.

8 CONCLUSION

In this work, we reveal that glitch tokens trigger abnormal acti-
vation characteristics in the model’s attention patterns and MLP
status through systematic empirical study. Inspired by this, we pro-
pose methods for detecting and fixing glitch tokens. GlitchProber
employs a sampling strategy, extracting features from attention
patterns andMLP status, and achieves rapid screening of the vocabu-
lary through PCA dimensionality reduction and SVM classification.
Experiments on LLMs demonstrate that GlitchProber saves 40%
of the time compared to existing methods while achieving higher
accuracy. Another important contribution is our strategy to fix
glitch tokens by adjusting the activation values of the model’s in-
termediate layers. Experiments on LLMs confirm the effectiveness
of this fix strategy, and the average repair rate of GlitchProber
was improved by 13.27% compared with the baseline method.

ACKNOWLEDGEMENT

This work was supported by the National NSF of China (grants
No.62302176, No.62072046, 62302181), the Key R&D Program of
Hubei Province (2023BAB017, 2023BAB079), and the Knowledge
Innovation Program of Wuhan-Basic Research (2022010801010083).

REFERENCES

[1] Hervé Abdi and Lynne J Williams. 2010. Principal component analysis. Wiley
interdisciplinary reviews: computational statistics 2, 4 (2010), 433–459.

[2] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USAZhibo Zhang, Wuxia Bai, Yuxi Li, Mark Huasong Meng, Kailong Wang, Ling Shi, Li Li, Jun Wang, and Haoyu Wang

Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

[3] 01. AI, :, Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei
Zhang, Heng Li, Jiangcheng Zhu, Jianqun Chen, Jing Chang, Kaidong Yu, Peng
Liu, Qiang Liu, Shawn Yue, Senbin Yang, Shiming Yang, Tao Yu, Wen Xie, Wenhao
Huang, Xiaohui Hu, Xiaoyi Ren, Xinyao Niu, Pengcheng Nie, Yuchi Xu, Yudong
Liu, Yue Wang, Yuxuan Cai, Zhenyu Gu, Zhiyuan Liu, and Zonghong Dai. 2024.
Yi: Open Foundation Models by 01.AI. arXiv:2403.04652 [cs.CL]

[4] Anthropic. 2024. The Claude 3 Model Family: Opus, Sonnet, Haiku. Online. https:
//www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/
Model_Card_Claude_3.pdf (Accessed: 2024-04-24).

[5] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan,
Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji
Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men,
Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng
Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang,
Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng
Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. 2023. Qwen Technical
Report. arXiv:2309.16609 [cs.CL]

[6] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei,
Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. arXiv:2107.03374 [cs.LG]

[7] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song,
Andreea Gane, Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin,
Lukasz Kaiser, et al. 2020. Rethinking attention with performers. arXiv preprint
arXiv:2009.14794 (2020).

[8] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun,
Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano,
Christopher Hesse, and John Schulman. 2021. Training Verifiers to Solve Math
Word Problems. arXiv preprint arXiv:2110.14168 (2021).

[9] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine
learning 20, 3 (1995), 273–297.

[10] Gelei Deng, Yi Liu, Yuekang Li, Kailong Wang, Ying Zhang, Zefeng Li, Haoyu
Wang, Tianwei Zhang, and Yang Liu. 2024. MasterKey: Automated Jailbreak
Across Multiple Large Language Model Chatbots. In NDSS.

[11] Gelei Deng, Yi Liu, Kailong Wang, Yuekang Li, Tianwei Zhang, and Yang Liu.
2024. Pandora: Jailbreak GPTs by Retrieval Augmented Generation Poisoning.
NDSS AISCC (2024).

[12] Martin Fell. 2023. A Search for More ChatGPT / GPT-3.5 / GPT-4
"Unspeakable" Glitch Tokens. Online. https://www.lesswrong.com/
posts/kmWrwtGE9B9hpbgRT/a-search-for-more-chatgpt-gpt-3-5-gpt-4-
unspeakable-glitch (Accessed: 2024-05-05).

[13] Jonas Geiping, Alex Stein, Manli Shu, Khalid Saifullah, Yuxin Wen, and Tom
Goldstein. 2024. Coercing LLMs to do and reveal (almost) anything. arXiv preprint
arXiv:2402.14020 (2024).

[14] Thomas Mesnard Gemma Team, Cassidy Hardin, Robert Dadashi, Surya Bhupati-
raju, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti,
Léonard Hussenot, and et al. 2024. Gemma. (2024). https://doi.org/10.34740/
KAGGLE/M/3301

[15] GlitchProber. (Accessed on 06/07/2024). https://sites.google.com/view/
glitchprober/.

[16] Hao Guan, Guangdong Bai, and Yepang Liu. 2024. Large Language Models Can
Connect the Dots: Exploring Model Optimization Bugs with Domain Knowledge-
Aware Prompts. In Proceedings of the 33rd ACM SIGSOFT International Symposium
on Software Testing and Analysis (Vienna, Austria) (ISSTA 2024). Association for
Computing Machinery, New York, NY, USA, 1579–1591. https://doi.org/10.1145/
3650212.3680383

[17] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn
Song, and Jacob Steinhardt. 2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300 (2020).

[18] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, De-
vendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux,
Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7B. arXiv:2310.06825 [cs.CL]

[19] Haodong Li, Gelei Deng, Yi Liu, Kailong Wang, Yuekang Li, Tianwei Zhang,
Yang Liu, Guoai Xu, Guosheng Xu, and Haoyu Wang. 2024. Digger: Detecting

Copyright Content Mis-usage in Large Language Model Training.
[20] Ningke Li, Yuekang Li, Yi Liu, Ling Shi, Kailong Wang, and Haoyu Wang. 2024.

Drowzee: Metamorphic Testing for Fact-conflicting Hallucination Detection in
Large Language Models. In OOPSLA (To Appear).

[21] Yuxi Li, Yi Liu, Gelei Deng, Ying Zhang, Wenjia Song, Ling Shi, Kailong Wang,
Yuekang Li, Yang Liu, and Haoyu Wang. 2024. Glitch Tokens in Large Language
Models: Categorization Taxonomy and Effective Detection. In FSE.

[22] Yuxi Li, Yi Liu, Yuekang Li, Ling Shi, Gelei Deng, Shengquan Chen, and Kailong
Wang. 2024. Lockpicking LLMs: A Logit-Based Jailbreak Using Token-level
Manipulation.

[23] Hanxiao Liu, Zihang Dai, David R. So, and Quoc V. Le. 2021. Pay Attention to
MLPs. arXiv:2105.08050 [cs.LG]

[24] Yi Liu, Gelei Deng, Yuekang Li, Kailong Wang, Tianwei Zhang, Yepang Liu,
Haoyu Wang, Yan Zheng, and Yang Liu. 2023. Prompt Injection attack against
LLM-integrated Applications. arXiv preprint arXiv:2306.05499 (2023).

[25] Haoneng Luo, Shiliang Zhang, Ming Lei, and Lei Xie. 2020. Simplified self-
attention for transformer-based end-to-end speech recognition. arXiv preprint
arXiv:2005.10463 (2020).

[26] mwatkins. 2023. The petertodd phenomenon. Online. https://
www.lesswrong.com/posts/jkY6QdCfAXHJk3kea/the-petertodd-phenomenon
(Accessed: 2024-05-05).

[27] mwatkins. 2023. A Search for More ChatGPT/GPT-3.5/GPT-4 "Un-
speakable" Glitch Tokens. Online. https://www.lesswrong.com/
posts/kmWrwtGE9B9hpbgRT/a-search-for-more-chatgpt-gpt-3-5-gpt-4-
unspeakable-glitch (Accessed: 2024-05-03).

[28] mwatkins and Jessica Rumbelow. 2023. SolidGoldMagikarp II: technical
details and more recent findings. Online. https://www.lesswrong.com/posts/
Ya9LzwEbfaAMY8ABo/solidgoldmagikarp-ii-technical-details-and-more-
recent (Accessed: 2024-05-05).

[29] mwatkins and Jessica Rumbelow. 2023. SolidGoldMagikarp III: Glitch token
archaeology. Online. https://www.lesswrong.com/posts/8viQEp8KBg2QSW4Yc/
solidgoldmagikarp-iii-glitch-token-archaeology (Accessed: 2024-05-05).

[30] Bloom J Nanda N. 2022. TransformerLens. Online. https://github.com/neelnanda-
io/TransformerLens (Accessed: 2024-05-05).

[31] Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy
Lillicrap, Jean-baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat,
Julian Schrittwieser, et al. 2024. Gemini 1.5: Unlocking multimodal understanding
across millions of tokens of context. arXiv preprint arXiv:2403.05530 (2024).

[32] Jessica Rumbelow and mwatkins. 2023. SolidGoldMagikarp(plus, prompt gen-
eration). Online. https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/
solidgoldmagikarp-plus-prompt-generation (Accessed: 2024-05-05).

[33] Bernhard Scholkopf and Alexander J. Smola. 2002. Learning with Kernels: Support
Vector Machines, Regularization, Optimization, and Beyond. MIT Press.

[34] Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste
Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth,
et al. 2023. Gemini: a family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805 (2023).

[35] Oguzhan Topsakal and Tahir Cetin Akinci. 2023. Creating large language model
applications utilizing langchain: A primer on developing llm apps fast. In Interna-
tional Conference on Applied Engineering and Natural Sciences, Vol. 1. 1050–1056.

[36] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucu-
rull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia
Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini,
Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet,
Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton,
Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva,
Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov,
Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. 2023. Llama 2:
Open Foundation and Fine-Tuned Chat Models. arXiv:2307.09288 [cs.CL]

[37] Vladimir N. Vapnik. 1995. The Nature of Statistical Learning Theory. Springer-
Verlag.

[38] Leonid Nisonovich Vaserstein. 1969. Markov processes over denumerable prod-
ucts of spaces, describing large systems of automata. Problemy Peredachi Infor-
matsii 5, 3 (1969), 64–72.

[39] Dixuan Wang, Yanda Li, Junyuan Jiang, Zepeng Ding, Guochao Jiang, Jiaqing
Liang, and Deqing Yang. 2024. Tokenization Matters! Degrading Large Language
Models through Challenging Their Tokenization. arXiv preprint arXiv:2405.17067
(2024).

[40] Guanyu Wang, Yuekang Li, Yi Liu, Gelei Deng, Tianlin Li, Guosheng Xu, Yang
Liu, Haoyu Wang, and Kailong Wang. 2024. MeTMaP: Metamorphic Testing
for Detecting False Vector Matching Problems in LLM Augmented Generation.
FORGE (2024).

https://arxiv.org/abs/2403.04652
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://arxiv.org/abs/2309.16609
https://arxiv.org/abs/2107.03374
https://www.lesswrong.com/posts/kmWrwtGE9B9hpbgRT/a-search-for-more-chatgpt-gpt-3-5-gpt-4-unspeakable-glitch
https://www.lesswrong.com/posts/kmWrwtGE9B9hpbgRT/a-search-for-more-chatgpt-gpt-3-5-gpt-4-unspeakable-glitch
https://www.lesswrong.com/posts/kmWrwtGE9B9hpbgRT/a-search-for-more-chatgpt-gpt-3-5-gpt-4-unspeakable-glitch
https://doi.org/10.34740/KAGGLE/M/3301
https://doi.org/10.34740/KAGGLE/M/3301
https://sites.google.com/view/glitchprober/
https://sites.google.com/view/glitchprober/
https://doi.org/10.1145/3650212.3680383
https://doi.org/10.1145/3650212.3680383
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2105.08050
https://www.lesswrong.com/posts/jkY6QdCfAXHJk3kea/the-petertodd-phenomenon
https://www.lesswrong.com/posts/jkY6QdCfAXHJk3kea/the-petertodd-phenomenon
https://www.lesswrong.com/posts/kmWrwtGE9B9hpbgRT/a-search-for-more-chatgpt-gpt-3-5-gpt-4-unspeakable-glitch
https://www.lesswrong.com/posts/kmWrwtGE9B9hpbgRT/a-search-for-more-chatgpt-gpt-3-5-gpt-4-unspeakable-glitch
https://www.lesswrong.com/posts/kmWrwtGE9B9hpbgRT/a-search-for-more-chatgpt-gpt-3-5-gpt-4-unspeakable-glitch
https://www.lesswrong.com/posts/Ya9LzwEbfaAMY8ABo/solidgoldmagikarp-ii-technical-details-and-more-recent
https://www.lesswrong.com/posts/Ya9LzwEbfaAMY8ABo/solidgoldmagikarp-ii-technical-details-and-more-recent
https://www.lesswrong.com/posts/Ya9LzwEbfaAMY8ABo/solidgoldmagikarp-ii-technical-details-and-more-recent
https://www.lesswrong.com/posts/8viQEp8KBg2QSW4Yc/solidgoldmagikarp-iii-glitch-token-archaeology
https://www.lesswrong.com/posts/8viQEp8KBg2QSW4Yc/solidgoldmagikarp-iii-glitch-token-archaeology
https://github.com/neelnanda-io/TransformerLens
https://github.com/neelnanda-io/TransformerLens
https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation
https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation
https://arxiv.org/abs/2307.09288

GlitchProber: Advancing Effective Detection and Mitigation of Glitch Tokens in Large Language Models ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

[41] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang
Zhu, Beibin Li, Li Jiang, Xiaoyun Zhang, and Chi Wang. 2023. Autogen: Enabling

next-gen llm applications via multi-agent conversation framework. arXiv preprint
arXiv:2308.08155 (2023).

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Transformer-based LLMs
	2.2 Glitch Token Phenomenon

	3 empirical study
	3.1 Experiment Setup
	3.2 RQ1: Glitch Token Characteristics
	3.3 RQ2: Ubiquity

	4 Methodology
	4.1 Detecting Glitch Tokens via GlitchProber
	4.2 Fixing Glitch Tokens via GlitchProber
	4.3 Key Layers Selection

	5 evaluation of Glitch Token detection
	5.1 Experiment setup
	5.2 RQ3 (Efficient Detection): How efficient is our approach in identifying glitch tokens across different LLMs?
	5.3 RQ4 (Ablation Study): How do the different components of GlitchProber affect the detection results?

	6 evaluation of glitch token fix
	6.1 Experiment setup
	6.2 RQ5 (Effective Fix): How effective is our approach in fixing glitch tokens across different LLMs?

	7 discussion
	7.1 Hyperparameters Choice of GlitchProber
	7.2 Rationale of GlitchProber versus Exhaustive Search
	7.3 Glitch Token Mitigation By Fine-tuning
	7.4 Threats to Validity

	8 conclusion
	References

