The University Investigating Documented Privacy Changes in Android OS

OF QUEENSLAND FSE|24
AUSTRALIA Chuan Yan, Mark Huasong Meng, Fuman Xie, Guangdong Bai

The University of Queensland, Australia

Introduction
In recent years, Android has taken proactive measures to
adapt its actcess con.trol p'011c1es for suf:h data, in .response to *»DPC in Android 10 * An app triggering a DPC issue
the increasingly strict privacy protection regulations around TargetApi =20
. . . . Some telephony, Bluetooth, Wi-Fi APIs if (ContextCompat.checkSelfPernission(this, ACCESS_FINE LOCATION)
the world. When each new Android version is released, its require FINE location permission. oy (I P pEALSION GRATED) ¢
; ; ; ; If your app targets Android 10 or higher, th Telephonyanager . getServicestate();
privacy changes induced by the version evolution are the IR ermission i arder fo use | oGt can 10 b Aok xshout prasto)
: several meAPIs. The folthods within the Wi-Fi, Wi-Fi catch (Exception e .
transparently disclosed, and we refer to them as documented e ont o e e | toeCi thraws an sceion)
privacy changes (DPCs). However, whether the actual access g)
control enforcement in the OS implementations aligns with o [Logcat: getservicestate(y can still be invoked without pernissiont

the disclosed DPCs becomes a critical concern. In this work,
we conduct the first systematic study on the consistency
between the operational behaviors of the OS at runtime and
the officially disclosed DPCs. We propose DopCheck, an
automatic DPC-driven testing framework equipped with a
large language model (LLM) pipeline. It features a serial of analysis to extract the ontology from the privacy change documents
written in natural language, and then harnesses the few-shot capability of LLMs to construct test cases for the detection of DPC-
compliance issues in OS implementations.

Fig 1. An example of the DPC issue. Android 10’s documentation states
that the API getServiceState() requires a particular permission (left),
whereas an app that does not request the permission can still invoke it
without throwing any exception (right)

DPC Ontology Construction Test Case Generation

Table 1. Nine types of DPC entities
Table 2. Four categories of DPCs to facilitate assertion construction

Entity Category Entity Pattern/Archors Regex S ic

Aggregate version_ [Tag:p) [‘S(tarti ‘Android”, End: 9-13] - Lower/ngher DPC Category Entity Criteria Testing Mode
application (Tag:p] ["app” + verb] - Hyperlink Required Entities! [Optional Entities®

Subject APL [Tag:code) [End: ()] \b[a-zA-Z_0-9]+\(\) Hyperlink, Class, S/1! q P — - - ——

expected return value API changes API permission, attribute, exception, return, effect |Return value validation

Property permission [Tag:code] [All capital letters joined with] ([A-Z]+_)+[A-Z]+ _Hyperlink, P/N? Permission changes | permission AP, attribute, exception, return GUI/Prompt validation
attribute [Tag:code] [<~] n Hyperlink, P/N GUI changes figure AP, exception, return GUI validation

Result exception [Tag:code] [“throw”, “occur”, End: “Exception”] - Condition® Attribute changes | attribute API permission, , exception, return Property testing

return Tag:p] [‘return”, End: “Noun/Num Entity™] - API
figure Tag:figure] - -

effect Tag:p] [Infinitive clause; sentence contains API] - API Mess age

System: You are a senior Android development engineer.

Target Version: Android 10 or higher

If your app targets Android 10 or higher, then the following methods don't return useful data: N W0 User: Give me two examples of call to Cal'l.StateChanged()’
removeNetwor .
Each network operation that returns a boolean value reassociate() one has READ_CALL_LOG, the other does not have.
: E> enableNetwork()
removeNetwork(); reassociate(), enableNetwork(), disableNetwork(), retrn False

disableNetwork()
reconnect(), and disconnect()--—- always, return false. reconnect()

Assistant: Manually write the CallStateChanged() test cases.

) dmm.‘())) Fig 3. An example of in-context learning
Fig 2. An example of the API-return subsumptive relationship

Ca , DopCheck harnesses the concept of in-context learning,
Considering that DopCheck’s test cases mostly center around p P &

APIs, we formulate the name of an API as the subject entity,
and define another 8 DPC entities to construct the context of an
API invocation. During the execution of the test cases, DopCheck checks
whether the invocation of the APIs leads to expected
behaviors or not. for example, to check whether the return
value matches the descriptions in the document, or to check
whether an expected security exception is thrown. To define
assertions for this purpose, we take a category-wise strategy.

which allows us to guide the model in producing results that
align with specific requirements in a few-shot.

After DopCheck has recognized entities, its next objective is to
discover subsumptive relationships that establish connections
among entities, and thereby facilitate the test case generation
process. we have defined five subsumptive relationships that
are based on the connection between entities.

Conclusion

DopCheck managed to identify a total of 19 bugs, with 13 of them discovered in Android 13 and 6 in Android 10 for the first time.
Our work reveals the inconsistency between what does documentation claim and how Android OS actually behave. Our findings

emphasize the importance of further research and action to address discrepancies in DPCs, aiming to better align documented
capabilities with their actual behavior.

Original Documentation of Android 13 Updated Documentation of Android 13 as of June 2023
(Prior to our reporting to Google) (After our reporting to Google)
Miscellaneous Miscell
3 iscel _Ianeﬂus Mlsoell’;neous Mlscelluaneous a Developers am Develope(s
AP ul AP ul APl . ul APl q ul Check for APIs that require the permission Check for APIs that require the permission
10
3 2 0 8 6 5 3 f your app targets Android 13 or high leclare the NEARBY_WIFI_DEVICES If your app targets Android 13 or higher, you must declare the NEARBY_WIFI_DEVICES
R q ermis oft in permission to callany of the following Wi-Fi APIs
2 1 3
1 1
8
Permissi ! ° 1 v 2 8 3
ermission Attribute Permission Attribute Permission o e Permission Attribute
ttach(AttachCallback attacht
identityChangedListener, Handler handler
Android 10 Android 11 Android 12 Android 13

Fig 4. Distribution of DPC categories for each Android version

Acknowledgments. This work was produced by UQ TrustLab in collaboration E:?"E
with the National University of Singapore (NUS) and led by Assoc. Prof. Guangdong

Bai. This work is supported by Australian Research Council Discovery Projects

(DP230101196, DP240103068). E

el rla
UQ TrustLab Read our paper

