
An app triggering a DPC issue

if (ContextCompat.checkSelfPermission(this, ACCESS_FINE_LOCATION)

!= PackageManager.PERMISSION_GRANTED) {

}

try {
TelephonyManager.getServiceState();
Log.e(getServiceState() can still be invoked without permission!)

} catch (Exception e) {
Log.e(It throws an Exception!)

}

If your app targets Android 10 or higher, apps must have
the ACCESS_FINE_LOCATION permission in order to use
several meAPIs. The folthods within the Wi-Fi, Wi-Fi
Aware, or Bluetooth lowing sections list the affected
classes and methods:
• getServiceState()
• ...

Some telephony, Bluetooth, Wi-Fi APIs
require FINE location permission.

A DPC in Android 10
TargetApi = 29

Logcat: getServiceState() can still be invoked without permission!

Fig 1. An example of the DPC issue. Android 10’s documentation states
that the API getServiceState() requires a particular permission (left),
whereas an app that does not request the permission can still invoke it
without throwing any exception (right)

Investigating Documented Privacy Changes in Android OS
Chuan Yan, Mark Huasong Meng, Fuman Xie, Guangdong Bai

The University of Queensland, Australia

Introduction

DPC Ontology Construction
Table 1. Nine types of DPC entities

Considering that DopCheck’s test cases mostly center around
APIs, we formulate the name of an API as the subject entity,
and define another 8 DPC entities to construct the context of an
API invocation.

Test Case Generation

If your app targets Android 10 or higher, then the following methods don't return useful data:

Each network operation that returns a boolean value

removeNetwork(), reassociate(), enableNetwork(), disableNetwork(),

reconnect(), and disconnect()---- always return false.

Target Version: Android 10 or higher

removeNetwork()
reassociate()
enableNetwork()
disableNetwork()
reconnect()
disconnect()

Falsereturn

Fig 2. An example of the API-return subsumptive relationship

After DopCheck has recognized entities, its next objective is to
discover subsumptive relationships that establish connections
among entities, and thereby facilitate the test case generation
process. we have defined five subsumptive relationships that
are based on the connection between entities.

Fig 3. An example of in-context learning

DopCheck harnesses the concept of in-context learning,
which allows us to guide the model in producing results that
align with specific requirements in a few-shot.

Table 2. Four categories of DPCs to facilitate assertion construction

During the execution of the test cases, DopCheck checks
whether the invocation of the APIs leads to expected
behaviors or not. for example, to check whether the return
value matches the descriptions in the document, or to check
whether an expected security exception is thrown. To define
assertions for this purpose, we take a category-wise strategy.

Fig 5. Change in Android documentation before and after our reporting

Android 10 Android 11 Android 12 Android 13

Fig 4. Distribution of DPC categories for each Android version

Conclusion
DopCheck managed to identify a total of 19 bugs, with 13 of them discovered in Android 13 and 6 in Android 10 for the first time.
Our work reveals the inconsistency between what does documentation claim and how Android OS actually behave. Our findings
emphasize the importance of further research and action to address discrepancies in DPCs, aiming to better align documented
capabilities with their actual behavior.

UQ TrustLab Read our paper

Acknowledgments. This work was produced by UQ TrustLab in collaboration
with the National University of Singapore (NUS) and led by Assoc. Prof. Guangdong
Bai. This work is supported by Australian Research Council Discovery Projects
(DP230101196, DP240103068).

In recent years, Android has taken proactive measures to
adapt its access control policies for such data, in response to
the increasingly strict privacy protection regulations around
the world. When each new Android version is released, its
privacy changes induced by the version evolution are
transparently disclosed, and we refer to them as documented
privacy changes (DPCs). However, whether the actual access
control enforcement in the OS implementations aligns with
the disclosed DPCs becomes a critical concern. In this work,
we conduct the first systematic study on the consistency
between the operational behaviors of the OS at runtime and
the officially disclosed DPCs. We propose DopCheck, an
automatic DPC-driven testing framework equipped with a
large language model (LLM) pipeline. It features alarge language model (LLM) pipeline. It features a serial of analysis to extract the ontology from the privacy change documents
written in natural language, and then harnesses the few-shot capability of LLMs to construct test cases for the detection of DPC-
compliance issues in OS implementations.

