

# Formalizing Robustness against Character-level Perturbations for Neural Network Language Models

Authors: **Zhongkui Ma**<sup>1</sup>, Xinguo Feng<sup>1</sup>, Zihan Wang<sup>1</sup>, Shuofeng Liu<sup>1</sup>, Mengyao Ma<sup>1</sup>, Hao Guan<sup>1</sup>, Mark Huasong Meng<sup>2</sup>

<sup>1</sup>The University of Queensland

<sup>2</sup>National University of Singapore

November, 2023





### Natural Language Processing with Neural Networks

Neural Networks revolutionize the performance of natural language processing (NLP).

However, adversarial samples pose a considerable risk to their reliability and accuracy.





### What is robustness?

*Robustness* is a property that ensures the model produces the same result no matter whether the sample is with or without perturbation.



# Introduction



### How to enhance robustness?

- Adversarial training: train model with adversarial samples that mislead the model
  - Expensive because of the search for adversarial samples
- Robustness training: train models with perturbed samples
  - Cheap because of the simple generation of perturbed samples





# Introduction

### How to generate perturbed samples?

- Continuous data (image, audio signal)
  - Tiny numerical change like  $x \pm \epsilon$
- Discrete data (text)
  - character-level, e.g., typos or mistakes, keyboard typos, inserting special characters, ...
  - word-level, e.g., synonyms, POS perturbation, domain-specific perturbation, ...



# OF QUEENSLAND

# Introduction

### Difficulties of generating perturbed texts?

- Practical meaning
  - It should happen in the real world, e.g., typos, letters swap, repeated letters, ...

### Semantic meaning

- It should be understandable by humans
- ▶ It should maintain certain linguistic properties, e.g., grammar, semantics, style, ...





### Our work - PdD

In this work, we propose our approach PdD to customize character-level perturbation for text data and aim to enhance the robustness of language models by robustness training.



#### THE UNIVERSITY OF QUEENSLAND

# Formalization

Unified Formalization of Perturbation

### **Perturbation Metrics**

Which item of input vector is perturbed?

## Definition (Probability Distribution)

The probability distribution P of a perturbation for a given input vector  $\mathbf{x} = (x_1, x_2, \dots, x_n)$  refers to the distribution that governs the probability P(i) of *i*-th element  $x_i$   $(1 \le i \le n)$  in the input vector being perturbed.



# Formalization



Unified Formalization of Perturbation

### **Perturbation Metrics**

How many items of the input vector are perturbed?

# Definition (Density)

The density d ( $0 \le d \le 1$ ) of perturbation refers to the percentage of perturbed elements in the given input vector.



#### THE UNIVERSITY OF QUEENSLAND

# Formalization

Unified Formalization of Perturbation

### **Perturbation Metrics**

How do the items of input vector are perturbed?

# Definition (Diversity)

The diversity  $D = \{(x_i, D_i) | 1 \le i \le n\}$  is a set of sets that contains all pairs  $(x_i, D_i)$ , where  $D_i = \{x'_i, x''_i, \cdots\}$  is the set of all possible candidate elements that can be used to perturb  $x_i$ .



# Formalization



#### Unified Formalization of Perturbation

### **Example 1**: ( $\epsilon$ -perturbation)

- Probability Distribution: Uniform distribution
- Density: The percentage of items to perturbed
- **•** Diversity:  $[x_i \epsilon, x_i + \epsilon]$

### Example 2: (Character-level perturbation)

- Probability Distribution: The probability of a character being perturbed
- Density: The proportion of characters subject to perturbation.
- Diversity: A specified set used to be the perturbed character

# Formalization



Formalization of Language Model

## Definition (Language Model)

A language model f is a function that takes a sequence of words  $\mathbf{x} \in \Sigma^*$  as input and outputs a sequence of words  $\mathbf{y} \in \Sigma^*$ , where  $\Sigma^*$  is its finite word set.

### Definition (Robustness of Language Model)

Robustness is the property that, given a language model f and a input  $x_0$  and its perturbed values set  $U_{x_0}$ , the resulting output set  $f(U_{x_0})$  satisfies being a subset of the predefined set  $U_{y_0} \subseteq \Sigma^*$ , i.e.

$$\forall x' \in U_{\boldsymbol{x}_o}, y' = f(x') \implies y' \in U_{\boldsymbol{y}_0}$$



Character-level Operation

**Replacement** For each element  $x_i$  in the input vector  $\mathbf{x}$ , we define a finite discrete set of candidates  $D_i$ . The set  $D_i$  comprises k candidate characters, denoted as  $c_{ij}$ , where  $1 \le j \le k$ . Each  $c_{ij}$  represents a possible substitution from the candidate set  $D_i$ .





Character-level Operation

**Deletion** For deletion, we set  $(x_i, D_i) = (x_i, [EMP])$ , where [EMP] represents an empty character.



# Formalization

Character-level Operation

**Insertion** For insertion, we set  $(x_i, D_i) = (x_i, x_i c_{ij}, c_{ij} x_i | 1 \le j \le k, k \in \mathbb{Z})$ , where  $c_{ij}$  is defined as in the replacement operation. Here,  $x_i c_{ij}$  or  $c_{ij} x_i$  represents the concatenation of the original character  $x_i$  and the inserted character  $c_{ij}$ .



#### THE UNIVERSITY OF QUEENSLAND

# Approach







Research Questions

- RQ1: Does the character-level perturbation affect the performance of language models? Are the effects of different perturbations different?
- RQ2: Does the robustness training enhance the model's performance on perturbed samples?
- RQ3: Does the robustness sacrifice the model's performance on original/clean samples?

# OF QUEENSLAND

# Evaluation

### Experimental Settings

### **Original Dataset & Augmented Dataset**

- Clean Dataset: the original dataset without perturbation
- Augmented Dataset: the original dataset with perturbed samples

### **Original Model & Augmented Model**

- Clean Model: trained with the dataset without perturbed samples
- Augmented Model: trained with the dataset with perturbed samples





# Evaluation

### Experimental Settings

### **Perturbation Settings**

- > Probability distribution: uniform distribution, normal distribution
- Density: low level (5%), high level (20%)
- Diversity:
  - **Deletion**: replacing a character with an empty character.
  - **Keyboard typos**: mistakenly pressing adjacent keys (8 neighboring keys).
  - **Diacritics**: replace a character with a set of 5 different diacritics.
  - Invisible characters insert one character that is not detectable by human eyes; from a pool of 48 invisible characters.

### Models, Datasets, and Tasks

| Model   | Dataset         | Task                       | #Class |
|---------|-----------------|----------------------------|--------|
| BERT    | Rotten Tomatoes | Sentiment Analysis         | 2      |
| RoBERTa | SNIL            | Natural Language Inference | 3      |
| ALBERT  | E-commerce      | Text Classification        | 4      |

# **Evaluation**



RQ1: Effects of different perturbations (probability distributions (**Uni**form, **Nor**mal), densities (**0.05**, **0.2**), and four types of diversity) on original models.





RQ2: Comparison of performance on perturbed datasets between the original model and the augmented model (BERT Model).



୬ ୯ ୯ 21 / 24

# Evaluation



RQ3: Performance on the original datasets of the augmented model (BERT Model).



22 / 24



- We formalize the perturbation of text data and propose three metrics: probability distribution, density, and diversity.
- We propose a perturbation generation algorithm, PdD configurable by the three metrics.
- We implement robustness training on various typical language models using PdD. The results demonstrate that the generated perturbed datasets are beneficial for enhancing the robustness against specified character-level perturbations.



# Thank you

