Enhancing Federated Learning Robustness using Data-agnostic Model Pruning

Mark Huasong Meng (National University of Singapore/ Institute for Infocomm Research (I2R), A*STAR, Singapore) Sin G. Teo (Institute for Infocomm Research (I2R), A*STAR, Singapore) Guangdong Bai (The University of Queensland, Australia) Kailong Wang (Huazhong University of Science and Technology, China) Jin Song Dong (National University of Singapore)

Background Federated Learning (FL)

- Federated learning (FL) is a machine learning (ML) technique that collaboratively trains a model from decentralized datasets.
- It takes advantage of the heterogeneity of the data owned by different parties to exhibit the great capacity of mitigating the fairness issue from the data bias.
- It also enables mobile and edge devices to participate in solving complex real-world problems, including financial services, cybersecurity, healthcare, and knowledge discovery.

A brief demonstration of federated learning

Background

Attacking Federated Learning

- FL is prone to be manipulated by malicious clients.
- The Byzantine failure is a major threat to FL due to its distributed paradigm.
- Malicious clients can deploy the poisoning attack.
 - Untargeted attacks
 - Aims to reduce the overall learning accuracy.
 - (Comparably) easier to defense.
 - Targeted attack
 - Aims to precisely misclassify.
 - By label-flipping or backdoor.

Background

Byzantine-robust Federated Learning

- Byzantine-resilient aggregations
 - Statistical algorithms
 - Median, Trimmed-mean (Yin et al., 2018)
 - Distance-based algorithms
 - Krum, Multi-Krum, Bulyan (Blanchard et al., 2017, El Mhamdi et al., 2018)
- Auxiliary (but effective) defenses
 - Pre-aggregation or Post-aggregation
 - ERR, LFR, and ERR+LFR (Fang et al., 2020)
 - Trust bootstrapping (Cao et al., 2021)
 - Post-training pruning & fine-tuning (Wu et al., 2022)
 - And many more...

Background

When Pruning meets Federated Learning...

- Pruning has shown effective in robust-FL (*Wu et al., 2022*).
 - It can remove redundant and "backdoor" neurons that trigger misbehaviors.
 - It relies on a voting process which requests participating clients' cooperation.
- Data-agnostic pruning is a stream of pruning techniques that does not request dataset access and re-training.
 - Date-free parameter pruning (Srinivas & Babu, 2015)
 - Paoding-dl (Meng et al., 2023)
- Data-agnostic pruning is suitable for the FL paradigm.

Our Solution - FLAP

Motivations

- Byzantine-resilient aggregations
 - Tend to over-rely on the estimation of the population of malicious clients.
- Auxiliary defenses
 - Request participating clients' cooperation, or even disclosure of their training set.
 - Do not work well with each other.

We study the adoption of pruning that ⁽¹⁾does not rely on the training data and therefore, can be solely performed by the server ⁽²⁾to boost the robustness-preservation ⁽³⁾without (explicitly) asking for clients' cooperation.

Our Solution - FLAP

Approach Overview

FLAP is motivated by an insight that model pruning could disable the insignificant and dormant parameters.

The workflow of federated learning with FLAP

Our Solution - FLAP

Data-free Pruning

The design of FLAP adopts the existing data-free pruning techniques (*Srinivas & Babu, 2015, Meng et al., 2023*) to prune hidden units in dense layers.

- Pair-wise pruning (cut one and keep the other).
- Cross-layer saliency-based sampling.
- Zero out the pruned parameter.

FLAP also performs a scale-based sampling strategy for convolutional layers.

- Prioritize the least salient channels for pruning.
- Measure the scale of a channel via L1-norm.

An Overview

Federated Learning

- We implement the FL based on TensorFlow.
- The benchmarked defensive & adversarial models are based on a public repository (pps-lab/fl-analysis).
- One server and 80 participating clients.
- Each aggregation round contains 5 training epochs.
- Starting from the 21st round, 20% (16) clients become malicious and performing targeted poisoning attack for 10 more rounds.

Pruning

- Prunes 1% hidden units (at least 1 per layer) at every dense and Conv2D layer.
- Perform pruning very five rounds.

Models & Datasets

• LeNet-5, MLP, and ResNet-18 models, trained with FEMNIST dataset.

Benchmarking

- FLAP does not aim to replace existing defense but to co-exist and boost them.
- We carry out benchmarking by observing robustness-preservation with and without FLAP.

RQ1: Effectiveness of FLAP in benign settings

RQ1 aims to investigate if FLAP suits the FL as a post-aggregational defensive optimization.

Observations

- The growth of test accuracy of models with FLAP is almost identical with the models without it.
- The adoption of FLAP can accelerate the loss descent.

Findings

- FLAP shows promising fidelity preservation in a non-adversarial circumstance.
- FLAP does not impair the learning process.

RQ2: FLAP in adversarial settings

RQ2 aims to study if FLAP can boost the existing defensive techniques towards Byzantine-robust FL.

Experiment Setup

- We use three modes (conservative, perfect, and radical) to simulate when the server under-estimates, exactly estimates, and over-estimates the presence of adversarial clients.
- We calculate the average error rate (for robustness evaluation) and test accuracy for 10 rounds.
- We reflect the change (annotated with growth \blacktriangle , unchanged \blacklozenge and decay \blacktriangledown) in the table (in the next two slides).

Benchmarked Objects

- Defensive techniques
 - Representative Byzantine-resilient aggregations, including trimmed-mean and multi-Krum.
 - SoTA auxiliary defense: rejection-based approach named ERR+LFR proposed by Fang et al. (2020).
- Adversarial models
 - Targeted label-flipping Byzantine attack.
 - Partial knowledge attack & full knowledge attack (Fang et al., 2020).

RQ2.1: FLAP in adversarial settings (vs. Byzantine-resilient aggregations)

Observations

- Existing Byzantine-resilient aggregations help reduce the error rate and improve the test accuracy only when the server sufficiently estimates the presence of malicious clients (i.e., perfect and radical modes).
- The adoption of FLAP is independent of the server's knowledge about the attackers' population.

Average error rates and test accuracy of FL (ResNet-18) equipped with different robust-aggregation rules, with (**bold**) and without FLAP

Aggregation Rules (in diff. configurations) FedAvg		Error Rate (Lower is Better)	Test Accuracy (Higher is Better) 10.3%, 10.9% (0.6% ▲)	
		30.8%, 20.0% (-10.8% ▼)		
Trimmed Mean	Conserv.	87.0%, 74.0% (-12.3% ▼)	11.5%, 14.6% (3.1% ▲)	
	Perfect	30.0%, 17.5% (-12.5% ▼)	92.1%, 97.8% (5.7% ▲)	
	Radical	11.4%, 9.8% (-1.6% ▼)	94.6%, 95.1% (0.5% ▲)	
Multi- Krum	Conserv.	84.3%, 83.7% (-0.6% ▼)	34.5%, 56.0% (21.5% ▲)	
	Perfect	35.6%, 43.5% (-2.7% ▼)	35.6%, 43.5% (7.9% ▲)	
	Radical	28.8%, 27.3% (-1.5% ▼)	35.3%, 44.2% (8.9%▲)	

RQ2.1: FLAP in adversarial settings (vs. Byzantine-resilient aggregations)

Observations

- Existing Byzantine-resilient aggregations help reduce the error rate and improve the test accuracy only when the server sufficiently estimates the presence of malicious clients (i.e., perfect and radical modes).
- The adoption of FLAP is independent of the server's knowledge about the attackers' population.

Average error rates and test accuracy of FL (ResNet-18) equipped with different robust-aggregation rules, with (**bold**) and without FLAP

Aggregation Rules (in diff. configurations)		Error Rate (Lower is Better)	Test Accuracy (Higher is Better)	
FedAvg		30.8%, 20.0% <u>(-10.8%▼)</u>	10.3%, 10.9% (<u>0.6%</u> ▲)	
Trimmed Mean	Conserv.	87.0%, 74.0% (-12.3% ▼)	11.5%, 14.6% (3.1%▲)	
	Perfect	30.0%, 17.5% (-12.5% ▼)	92.1%, 97.8% (5.7%▲)	
	Radical	11.4%, 9.8% (-1.6%▼)	94.6%, 95.1% (0.5%	
Multi- Krum	Conserv.	84.3%, 83.7% (-0.6%▼)	34.5%, 56.0% (21.5%▲)	
	Perfect	35.6%, 43.5% (-2.7% ▼)	35.6%, 43.5% (7.9%▲)	
	Radical	28.8%, 27.3% (-1.5% ▼)	35.3%, 44.2% (8.9%▲)	

RQ2.1: FLAP in adversarial settings (vs. Byzantine-resilient aggregations)

Observations

- Existing Byzantine-resilient aggregations help reduce the error rate and improve the test accuracy only when the server sufficiently estimates the presence of malicious clients (i.e., perfect and radical modes).
- The adoption of FLAP is independent of the server's knowledge about the attackers' population.

Findings

- FLAP can improve the FL in all three modes of the two aggregation algorithms.
- FLAP reduces error rate by up to 12.5%.
- FLAP helps FL to better converge with an improvement in average test accuracy of 21.5%.

Average error rates and test accuracy of FL (ResNet-18) equipped with different robust-aggregation rules, with (**bold**) and without FLAP

Aggregation Rules (in diff. configurations)		Error Rate (Lower is Better)	Test Accuracy (Higher is Better)	
FedAvg		30.8%, 20.0% (-10.8% ▼)	10.3%, 10.9% (0.6%▲)	
Trimmed Mean	Conserv.	87.0%, 74.0%	11.5%, 14.6% (3.1%▲)	
	Perfect	30.0%, 17.5% (-12.5% ▼)	92.1%, 97.8% (5.7%▲)	
	Radical	11.4%, 9.8% (-1.6% ▼)	94.6%, 95.1% (0,5% ^)	
Multi- Krum	Conserv.	84.3%, 83.7% (-0.6% ▼)	34.5%, 56.0% (21.5%▲)	
	Perfect	35.6%, 43.5% (-2.7% ▼)	35.6%, 43.5% (7.9%▲)	
	Radical	28.8%, 27.3% (-1.5%▼)	35.3%, 44.2% (8.9%▲)	

RQ2.2: FLAP in adversarial settings (vs. advanced adversarial/defensive models)

Observations

- FLAP (w/o ERR+LFR) can achieve a lower error rate than the ERR+LFR defense (w/o FLAP) in all scenarios of the multi-Krum settings and 2 out of 6 scenarios of the trimmed-mean settings.
- It also manages to outperform the ERR+LFR defense in 14 out of 18 scenarios of both aggregation settings w.r.t the test accuracy.
- FLAP brings a higher accuracy and lower error rate in the vast majority adversarial settings.

Findings

- FLAP is shown effective towards Byzantine-robust FL in both benign and adversarial environments.
- It can boost existing defenses for a higher degree of Byzantine-robustness.

Changes in average error rates and test accuracy of FL (ResNet-18) in various adversarial and defensive settings, after the adoption of FLAP

	Adversarial Models							
Aggregation	Auxiliary	Targeted Label	Partial	Full				
Rules	Defense	Flipping	Knowledge	Knowledge				
Error Rates (Lower is Better)								
FedAvg		-10.8% 🔻	-42.8% 🔻	-20.0% 🔻				
Trimmed Mean		-12.3% 🔻	-9.6% 🔻	-31.8% 🔻				
(Conserv.)	ERR+LFR	-39.2% 🔻	-8.7% 🔻	-16.3% 🔻				
Trimmed Mean		-12.5% 🔻	-5.4% 🔻	-5.1% 🔻				
(Perfect)	ERR+LFR	-1.2% 🔻	-1.3% 🔻	-6.4% 🔻				
Trimmed Mean		-1.6% 🔻	-1.7% 🔻	-2.1% 🔻				
(Radical)	ERR+LFR	0.0%◆	-1.6% 🔻	-0.3% 🔻				
Multi-Krum		-0.6% 🔻	-18.5% 🔻	-9.6% 🔻				
(Conserv.)	ERR+LFR	-0.8% 🔻	-10.9% 🔻	-8.1% 🔻				
Multi-Krum		-2.7% 🔻	-7.1% 🔻	-6.4% 🔻				
(Perfect)	ERR+LFR	-2.7% 🔻	-6.4% 🔻	-6.4% 🔻				
Multi-Krum		-1.5% 🔻	-9.4% 🔻	-2.3% 🔻				
(Radical)	ERR+LFR	-6.4% 🔻	-6.9% 🔻	-10.2% 🔻				
Test Accuracy (Higher is Better)								
FedAvg		0.6% 🔺	0.0%◆	0.2% 🔺				
Trimmed Mean		3.1% 🔺	3.8% 🔺	2.6% 🔺				
(Conserv.)	ERR+LFR	-0.2% 🔻	5.2% 🔺	1.3% 🔺				
Trimmed Mean		5.7% 🔺	0.9% 🔺	2.6% 🔺				
(Perfect)	ERR+LFR	-0.4% 🔻	0.5% 🔺	-0.2% 🔻				
Trimmed Mean		0.5% 🔺	0.9% 🔺	-0.4% 🔻				
(Radical)	ERR+LFR	0.2% 🔺	0.3% 🔺	0.0%◆				
Multi-Krum		21.5% 🔺	20.8% 🔺	14.6% 🔺				
(Conserv.)	ERR+LFR	21.6% 🔺	21.7% 🔺	22.1% 🔺				
Multi-Krum		7.9% 🔺	8.7% 🔺	8.7% 🔺				
(Perfect)	ERR+LFR	7.9% 🔺	8.7%	10.4%				
Multi-Krum		8.9%	9.9% 🔺	11.3%				
(Radical)	ERR+LFR	8.9% 🔺	12.4%	11.5% 🔺				

Discussion

Improvement of current model-agnostic pruning

- Expand the coverage of model pruning (e.g., support of residual blocks)
- Use test set to guide model pruning
- An adaptive defense paradigm toward Byzantine-robust FL
 - Adaptive in the black-box adversarial settings
 - Expect new defence that can co-exist with existing approaches

Conclusion

- A novel FL pruning technique for enhancing robustness
 - Without relying on an estimation of malicious clients' population
 - Makes no request for the cooperation of participating clients
- An empirical study to explore the effectiveness of FLAP in an adversarial environment
- A comparative benchmarking with the SoTA defense techniques
 - Outperforms existing defence techniques
 - Boosts the SoTA defences towards a higher degree of Byzantine robustness

Contact

Should you have any question, please feel free to contact us:

Mark Huasong Meng (huasong.meng@u.nus.edu)

Guangdong Bai (g.bai@uq.edu.au)

Sin Gee Teo (teo_sin_gee@i2r.a-star.edu.sg)

Feel free to visit our lab's webpage: https://uq-trust-lab.github.io/

Reference

- Blanchard, P., Mhamdi, E.M.E., Guerraoui, R., Stainer, J.: Machine learning with adversaries: Byzantine tolerant gradient descent. In: Advances in neural information processing systems (NeurIPS). pp. 119–129 (2017)
- Cao, X., Fang, M., Liu, J., Gong, N.Z.: Fltrust: Byzantine-robust federated learning via trust bootstrapping. In: Network and Distributed System Security Symposium (NDSS). The Internet Society (2021)
- Chen, X., Liu, C., Li, B., Lu, K., Song, D.: Targeted backdoor attacks on deep learning systems using data poisoning. arXiv preprint arXiv:1712.05526 (2017)
- El Mhamdi, E. M., Guerraoui, R., and Rouault, S.: The hidden vulnerability of distributed learning in Byzantium. In: 35th International Conference on Machine Learning (ICML) (2018)
- Fang, M., Cao, X., Jia, J., Gong, N.: Local model poisoning attacks to byzantine-robust federated learning. In: 29th USENIX Security Symposium (2020)
- Meng, M.H., Bai, G., Teo, S.G., Dong, J.S.: Supervised robustness-preserving data-free neural network pruning. In: International Conference on Engineering of Complex Computer Systems (ICECCS) (2023)
- Meng, M.H., Bai, G., Teo, S.G., Hou, Z., Xiao, Y., Lin, Y., Dong, J.S.: Adversarial robustness of deep neural networks: A survey from a formal verification perspective. IEEE Transactions on Dependable and Secure Computing (IEEE TDSC) (2022)
- Srinivas, S., Babu, R.V.: Data-free parameter pruning for deep neural networks. In: Proceedings of the British Machine Vision Conference (BMVC) (2015)
- Yin, D., Chen, Y., Ramchandran, K., Bartlett, P.L.: Byzantine-robust distributed learning: Towards optimal statistical rates. In: International Conference on Machine Learning (ICML) (2018)
- Wu, C., Yang, X., Zhu, S., Mitra, P.: Toward Cleansing Backdoored Neural Networks in Federated Learning. In: IEEE 42nd International Conference on Distributed Computing Systems (ICDCS) (2022)

Please refer to our manuscript for more references and technical details.