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Federated Learning (FL)

• Federated learning (FL) is a machine learning (ML) 

technique that collaboratively trains a model from 

decentralized datasets.

• It takes advantage of the heterogeneity of the data owned 

by different parties to exhibit the great capacity of 

mitigating the fairness issue from the data bias.

• It also enables mobile and edge devices to participate in 

solving complex real-world problems, including financial 

services, cybersecurity, healthcare, and knowledge 

discovery.

A brief demonstration of federated learning



Background

3

Attacking Federated Learning

• FL is prone to be manipulated by malicious clients.

• The Byzantine failure is a major threat to FL due to its 

distributed paradigm.

• Malicious clients can deploy the poisoning attack.

• Untargeted attacks 

• Aims to reduce the overall learning accuracy.

• (Comparably) easier to defense.

• Targeted attack

• Aims to precisely misclassify.

• By label-flipping or backdoor.
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Byzantine-robust Federated Learning

▪ Byzantine-resilient aggregations

• Statistical algorithms

• Median, Trimmed-mean (Yin et al., 2018)

• Distance-based algorithms

• Krum, Multi-Krum, Bulyan (Blanchard et al., 2017, 

El Mhamdi et al., 2018)

▪ Auxiliary (but effective) defenses

• Pre-aggregation or Post-aggregation

• ERR, LFR, and ERR+LFR (Fang et al., 2020)

• Trust bootstrapping (Cao et al., 2021)

• Post-training pruning & fine-tuning (Wu et al., 2022)

• And many more…
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When Pruning meets Federated Learning… 

• Pruning has shown effective in robust-FL (Wu et al., 2022).

• It can remove redundant and “backdoor” neurons that trigger misbehaviors.

• It relies on a voting process which requests participating clients’ cooperation.

• Data-agnostic pruning is a stream of pruning techniques that does not request 

dataset access and re-training.

• Date-free parameter pruning (Srinivas & Babu, 2015)

• Paoding-dl (Meng et al., 2023)

• Data-agnostic pruning is suitable for the FL paradigm.
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Motivations

• Byzantine-resilient aggregations

• Tend to over-rely on the estimation of the population of malicious clients.

• Auxiliary defenses

• Request participating clients’ cooperation, or even disclosure of their training set.

• Do not work well with each other.

We study the adoption of pruning that (1)does not rely on the training data and therefore, 

can be solely performed by the server (2)to boost the robustness-preservation (3)without 

(explicitly) asking for clients’ cooperation.
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Approach Overview

The workflow of federated learning with FLAP

FLAP is motivated by an insight that model 

pruning could disable the insignificant and 

dormant parameters.
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Data-free Pruning

The design of FLAP adopts the existing data-free pruning 

techniques (Srinivas & Babu, 2015, Meng et al., 2023) to prune 

hidden units in dense layers.

• Pair-wise pruning (cut one and keep the other).

• Cross-layer saliency-based sampling.

• Zero out the pruned parameter.

FLAP also performs a scale-based sampling strategy 

for convolutional layers.

• Prioritize the least salient channels for pruning.

• Measure the scale of a channel via L1-norm.
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An Overview

Federated Learning

• We implement the FL based on TensorFlow.

• The benchmarked defensive & adversarial models are based on a public repository (pps-lab/fl-analysis).

• One server and 80 participating clients.

• Each aggregation round contains 5 training epochs.

• Starting from the 21st round, 20% (16) clients become malicious and performing targeted poisoning attack for 10 more rounds.

Pruning

• Prunes 1% hidden units (at least 1 per layer) at every dense and Conv2D layer.

• Perform pruning very five rounds.

Models & Datasets

• LeNet-5, MLP, and ResNet-18 models, trained with FEMNIST dataset.

Benchmarking

• FLAP does not aim to replace existing defense but to co-exist and boost them.

• We carry out benchmarking by observing robustness-preservation with and without FLAP.
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RQ1: Effectiveness of FLAP in benign settings

RQ1 aims to investigate if FLAP suits the FL as a post-aggregational defensive optimization.

Observations

• The growth of test accuracy of models with FLAP is almost identical with the models without it.

• The adoption of FLAP can accelerate the loss descent.

Findings

• FLAP shows promising fidelity preservation in a non-adversarial circumstance.

• FLAP does not impair the learning process.

Test accuracy and loss of FL up to 

round 20, with and without FLAP
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RQ2: FLAP in adversarial settings

RQ2 aims to study if FLAP can boost the existing defensive techniques towards Byzantine-robust FL.

Experiment Setup

• We use three modes (conservative, perfect, and radical) to simulate when the server under-estimates, exactly 

estimates, and over-estimates the presence of adversarial clients.

• We calculate the average error rate (for robustness evaluation) and test accuracy for 10 rounds.

• We reflect the change (annotated with growth ▲, unchanged ◆ and decay ▼) in the table (in the next two slides).

Benchmarked Objects

• Defensive techniques

• Representative Byzantine-resilient aggregations, including trimmed-mean and multi-Krum.

• SoTA auxiliary defense: rejection-based approach named ERR+LFR proposed by Fang et al. (2020).

• Adversarial models

• Targeted label-flipping Byzantine attack.

• Partial knowledge attack & full knowledge attack (Fang et al., 2020).
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RQ2.1: FLAP in adversarial settings (vs. Byzantine-resilient aggregations)

Aggregation Rules

(in diff. configurations)

Error Rate

(Lower is Better)

Test Accuracy

(Higher is Better)

FedAvg
30.8%, 20.0%

(-10.8%▼)

10.3%, 10.9%

(0.6%▲)

Trimmed 

Mean

Conserv.
87.0%, 74.0%

(-12.3%▼)

11.5%, 14.6%

(3.1%▲)

Perfect
30.0%, 17.5%

(-12.5%▼)

92.1%, 97.8%

(5.7%▲)

Radical
11.4%, 9.8%

(-1.6%▼)

94.6%, 95.1%

(0.5%▲)

Multi-

Krum

Conserv.
84.3%, 83.7%

(-0.6%▼)

34.5%, 56.0%

(21.5%▲)

Perfect
35.6%, 43.5%

(-2.7%▼)

35.6%, 43.5%

(7.9%▲)

Radical
28.8%, 27.3%

(-1.5%▼)

35.3%, 44.2%

(8.9%▲)

Average error rates and test accuracy of FL (ResNet-18) equipped 

with different robust-aggregation rules, with (bold) and without FLAP

Observations

• Existing Byzantine-resilient aggregations help reduce 

the error rate and improve the test accuracy only when 

the server sufficiently estimates the presence of 

malicious clients (i.e., perfect and radical modes).

• The adoption of FLAP is independent of the server’s 

knowledge about the attackers’ population.

Findings

• FLAP can improve the FL in all three modes of the two 

aggregation algorithms.

• FLAP reduces error rate by up to 12.5%.

• FLAP helps FL to better converge with an 

improvement in average test accuracy of 21.5%.



Evaluation

13

RQ2.1: FLAP in adversarial settings (vs. Byzantine-resilient aggregations)

Aggregation Rules

(in diff. configurations)

Error Rate

(Lower is Better)

Test Accuracy

(Higher is Better)

FedAvg
30.8%, 20.0%

(-10.8%▼)

10.3%, 10.9%

(0.6%▲)

Trimmed 

Mean

Conserv.
87.0%, 74.0%

(-12.3%▼)

11.5%, 14.6%

(3.1%▲)

Perfect
30.0%, 17.5%

(-12.5%▼)

92.1%, 97.8%

(5.7%▲)

Radical
11.4%, 9.8%

(-1.6%▼)

94.6%, 95.1%

(0.5%▲)

Multi-

Krum

Conserv.
84.3%, 83.7%

(-0.6%▼)

34.5%, 56.0%

(21.5%▲)

Perfect
35.6%, 43.5%

(-2.7%▼)

35.6%, 43.5%

(7.9%▲)

Radical
28.8%, 27.3%

(-1.5%▼)

35.3%, 44.2%

(8.9%▲)

Average error rates and test accuracy of FL (ResNet-18) equipped 

with different robust-aggregation rules, with (bold) and without FLAP

Observations

• Existing Byzantine-resilient aggregations help reduce 

the error rate and improve the test accuracy only when 

the server sufficiently estimates the presence of 

malicious clients (i.e., perfect and radical modes).

• The adoption of FLAP is independent of the server’s 

knowledge about the attackers’ population.

Findings

• FLAP can improve the FL in all three modes of the two 

aggregation algorithms.

• FLAP reduces error rate by up to 12.5%.

• FLAP helps FL to better converge with an 

improvement in average test accuracy of 21.5%.



Evaluation

14

RQ2.1: FLAP in adversarial settings (vs. Byzantine-resilient aggregations)

Aggregation Rules

(in diff. configurations)

Error Rate

(Lower is Better)

Test Accuracy

(Higher is Better)

FedAvg
30.8%, 20.0%

(-10.8%▼)

10.3%, 10.9%

(0.6%▲)

Trimmed 

Mean

Conserv.
87.0%, 74.0%

(-12.3%▼)

11.5%, 14.6%

(3.1%▲)

Perfect
30.0%, 17.5%

(-12.5%▼)

92.1%, 97.8%

(5.7%▲)

Radical
11.4%, 9.8%

(-1.6%▼)

94.6%, 95.1%

(0.5%▲)

Multi-

Krum

Conserv.
84.3%, 83.7%

(-0.6%▼)

34.5%, 56.0%

(21.5%▲)

Perfect
35.6%, 43.5%

(-2.7%▼)

35.6%, 43.5%

(7.9%▲)

Radical
28.8%, 27.3%

(-1.5%▼)

35.3%, 44.2%

(8.9%▲)

Average error rates and test accuracy of FL (ResNet-18) equipped 

with different robust-aggregation rules, with (bold) and without FLAP

Observations

• Existing Byzantine-resilient aggregations help reduce 

the error rate and improve the test accuracy only when 

the server sufficiently estimates the presence of 

malicious clients (i.e., perfect and radical modes).

• The adoption of FLAP is independent of the server’s 

knowledge about the attackers’ population.

Findings

• FLAP can improve the FL in all three modes of the two 

aggregation algorithms.

• FLAP reduces error rate by up to 12.5%.

• FLAP helps FL to better converge with an 

improvement in average test accuracy of 21.5%.



Evaluation

15

RQ2.2: FLAP in adversarial settings (vs. advanced 
adversarial/defensive models) Aggregation 

Rules

Auxiliary 

Defense

Adversarial Models

Targeted Label 

Flipping

Partial 

Knowledge

Full

Knowledge

Error Rates (Lower is Better)

FedAvg –– -10.8%▼ -42.8%▼ -20.0%▼

Trimmed Mean 

(Conserv.)

–– -12.3%▼ -9.6%▼ -31.8%▼

ERR+LFR -39.2%▼ -8.7%▼ -16.3%▼

Trimmed Mean 

(Perfect)

–– -12.5%▼ -5.4%▼ -5.1%▼

ERR+LFR -1.2%▼ -1.3%▼ -6.4%▼

Trimmed Mean 

(Radical)

–– -1.6%▼ -1.7%▼ -2.1%▼

ERR+LFR 0.0%◆ -1.6%▼ -0.3%▼

Multi-Krum 

(Conserv.)

–– -0.6%▼ -18.5%▼ -9.6%▼

ERR+LFR -0.8%▼ -10.9%▼ -8.1%▼

Multi-Krum 

(Perfect)

–– -2.7%▼ -7.1%▼ -6.4%▼

ERR+LFR -2.7%▼ -6.4%▼ -6.4%▼

Multi-Krum 

(Radical)

–– -1.5%▼ -9.4%▼ -2.3%▼

ERR+LFR -6.4%▼ -6.9%▼ -10.2%▼

Test Accuracy (Higher is Better)

FedAvg –– 0.6%▲ 0.0%◆ 0.2%▲

Trimmed Mean 

(Conserv.)

–– 3.1%▲ 3.8%▲ 2.6%▲

ERR+LFR -0.2%▼ 5.2%▲ 1.3%▲

Trimmed Mean 

(Perfect)

–– 5.7%▲ 0.9%▲ 2.6%▲

ERR+LFR -0.4%▼ 0.5%▲ -0.2%▼

Trimmed Mean 

(Radical)

–– 0.5%▲ 0.9%▲ -0.4%▼

ERR+LFR 0.2%▲ 0.3%▲ 0.0%◆

Multi-Krum 

(Conserv.)

–– 21.5%▲ 20.8%▲ 14.6%▲

ERR+LFR 21.6%▲ 21.7%▲ 22.1%▲

Multi-Krum 

(Perfect)

–– 7.9%▲ 8.7%▲ 8.7%▲

ERR+LFR 7.9%▲ 8.7%▲ 10.4%▲

Multi-Krum 

(Radical)

–– 8.9%▲ 9.9%▲ 11.3%▲

ERR+LFR 8.9%▲ 12.4%▲ 11.5%▲

Changes in average error rates and test accuracy of FL (ResNet-18) in 

various adversarial and defensive settings, after the adoption of FLAP

Observations

• FLAP (w/o ERR+LFR) can achieve a lower error rate 

than the ERR+LFR defense (w/o FLAP) in all 

scenarios of the multi-Krum settings and 2 out of 6 

scenarios of the trimmed-mean settings.

• It also manages to outperform the ERR+LFR defense 

in 14 out of 18 scenarios of both aggregation settings 

w.r.t the test accuracy.

• FLAP brings a higher accuracy and lower error rate in 

the vast majority adversarial settings. 

Findings

• FLAP is shown effective towards Byzantine-robust FL 

in both benign and adversarial environments.

• It can boost existing defenses for a higher degree of 

Byzantine-robustness.
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• Improvement of current model-agnostic pruning

• Expand the coverage of model pruning (e.g., support of residual blocks)

• Use test set to guide model pruning

• An adaptive defense paradigm toward Byzantine-robust FL

• Adaptive in the black-box adversarial settings 

• Expect new defence that can co-exist with existing approaches 
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• A novel FL pruning technique for enhancing robustness

• Without relying on an estimation of malicious clients’ population

• Makes no request for the cooperation of participating clients

• An empirical study to explore the effectiveness of FLAP in an adversarial environment

• A comparative benchmarking with the SoTA defense techniques

• Outperforms existing defence techniques

• Boosts the SoTA defences towards a higher degree of Byzantine robustness
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Contact

Should you have any question, please feel free to contact us:

Guangdong Bai (g.bai@uq.edu.au)

Sin Gee Teo (teo_sin_gee@i2r.a-star.edu.sg)

Mark Huasong Meng (huasong.meng@u.nus.edu)

Feel free to visit our lab’s webpage: https://uq-trust-lab.github.io/

https://uq-trust-lab.github.io/
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