
Post-GDPR Threat Hunting on Android Phones:
Dissecting OS-level Safeguards of User-unresettable
Identifiers (UUIs)

Mark Huasong Meng (National University of Singapore), Qing Zhang (ByteDance), Guangshuai Xia (ByteDance), Yuwei
Zheng (ByteDance), , Yanjun Zhang (Deakin University, Australia), Guangdong Bai (University of Queensland, Australia), Zhi
Liu (ByteDance), Sin G. Teo (Institute for Infocomm, A*STAR, Singapore), Jin Song Dong (National University of Singapore)

Background

The protection of personal data has gained a great deal of attention around the world.

137 out of 194 countries had put in place legislation to secure the protection of data and privacy.

Our phones are the first line of defence against privacy infringement.

2

Data Protection and Privacy Legislation Worldwide (as of 2022)

Post-GDPR Era

Background

Google has taken steps to enforce new privacy features to restrict apps’ use of user data.

Representative privacy changes in Android 10:
• New privileged permissions

• READ_PRIVILEGED_PHONE_STATE
• Only granted to privileged system apps.

• App-unique and user-resettable identifiers
• Android advertising ID

• Compulsory disclosure of apps’ access, collection, use, and sharing of user data.

3

Android Ecosystem

Motivation

4

Personally identifiable data exfiltration in Android at app-level or library-level has been extensively
studied by the research community (Enck et al., 2014, Qiu et al., 2015, Ren et al., 2018, Wang et al.,
2020).

Privacy protection at OS-level is still an open question.

Many types of personally identifiable data served at OS-level are user-unresettable.

• Serial number, IMEI, MAC Address, etc.

• Not easily replaceable as a password once leaked.

• We refer to them as user unresettable identifiers (UUIs).

Whether the operating systems (OSes) themselves comprehensively
safeguard UUIs?

OS-level UUI Safeguard

Understanding Android UUIs
List of 6 recognized Android UUIs

5

UUI Category API(s) Permission/API changes*

1 Serial number Chip &
Cellular

android.os.Build: getSerial() V8-9: READ_PHONE_STATE required.
≥10: READ_PRIVILEDGED_PHONE_STATE required.

2 Device ID (IMEI
or MEID)

android.telephony.TelephonyManager: getImei(), getDeviceId(),
getMeid()

<10: READ_PHONE_STATE required.
≥10: READ_PRIVILEDGED_PHONE_STATE required.

android.telephony.TelephonyManager: getSimSerialNumber()
android.telephony.SubscriptionInfo: getIccid()3 ICCID

android.telephony.TelephonyManager: getSubscribeId()4 IMSI

5 Bluetooth MAC
Address

Wireless
Module

android.bluetooth.BluetoothAdapter: getAddress() All versions: BLUETOOTH required.
≥10: Randomization or a fixed return value required.
V6-10: ACCESS_COARSE_LOCATION or ACCESS_FINE_LOCATION
required.
≥10: ACCESS_FINE_LOCATION becomes mandatory.

6 WiFi MAC
Address

android.net.wifi.WifiInfo: getMacAddress() All versions: ACCESS_WIFI_STATE required.
V6-9: Randomization suggested.
≥10: Randomization becomes mandatory.

* The color scheme indicate the permission protection levels: normal, dangerous, and signature.

Understanding Android UUIs
List of 6 recognized Android UUIs

6

UUI Category API(s) Permission/API changes*

1 Serial number Chip &
Cellular

android.os.Build: getSerial() V8-9: READ_PHONE_STATE required.
≥10: READ_PRIVILEDGED_PHONE_STATE required.

2 Device ID (IMEI
or MEID)

android.telephony.TelephonyManager: getImei(), getDeviceId(),
getMeid()

<10: READ_PHONE_STATE required.
≥10: READ_PRIVILEDGED_PHONE_STATE required.

android.telephony.TelephonyManager: getSimSerialNumber()
android.telephony.SubscriptionInfo: getIccid()3 ICCID

android.telephony.TelephonyManager: getSubscribeId()4 IMSI

5 Bluetooth MAC
Address

Wireless
Module

android.bluetooth.BluetoothAdapter: getAddress() All versions: BLUETOOTH required.
≥10: Randomization or a fixed return value required.
V6-10: ACCESS_COARSE_LOCATION or ACCESS_FINE_LOCATION
required.
≥10: ACCESS_FINE_LOCATION becomes mandatory.

6 WiFi MAC
Address

android.net.wifi.WifiInfo: getMacAddress() All versions: ACCESS_WIFI_STATE required.
V6-9: Randomization suggested.
≥10: Randomization becomes mandatory.

* The color scheme indicate the permission protection levels: normal, dangerous, and signature.

For each UUI, there is/used to be at
least 1 official API for apps to access.

Understanding Android UUIs
List of 6 recognized Android UUIs

7

UUI Category API(s) Permission/API changes*

1 Serial number Chip &
Cellular

android.os.Build: getSerial() V8-9: READ_PHONE_STATE required.
≥10: READ_PRIVILEDGED_PHONE_STATE required.

2 Device ID (IMEI
or MEID)

android.telephony.TelephonyManager: getImei(), getDeviceId(),
getMeid()

<10: READ_PHONE_STATE required.
≥10: READ_PRIVILEDGED_PHONE_STATE required.

android.telephony.TelephonyManager: getSimSerialNumber()
android.telephony.SubscriptionInfo: getIccid()3 ICCID

android.telephony.TelephonyManager: getSubscribeId()4 IMSI

5 Bluetooth MAC
Address

Wireless
Module

android.bluetooth.BluetoothAdapter: getAddress() All versions: BLUETOOTH required.
≥10: Randomization or a fixed return value required.
V6-10: ACCESS_COARSE_LOCATION or ACCESS_FINE_LOCATION
required.
≥10: ACCESS_FINE_LOCATION becomes mandatory.

6 WiFi MAC
Address

android.net.wifi.WifiInfo: getMacAddress() All versions: ACCESS_WIFI_STATE required.
V6-9: Randomization suggested.
≥10: Randomization becomes mandatory.

* The color scheme indicate the permission protection levels: normal, dangerous, and signature.

For each UUI, there is/used to be at
least 1 official API for apps to access.

These 6 pre-identified UUIs are useful
for us to form our understanding of
more types of undiscovered UUIs on
Android devices.

Objective

We design and implement U2-I2 (short for UUI Investigator)
• Systematically investigates the OS-level UUI protection at large scale.
• Designed to assess the protection of not only the six known UUIs, but also other previously

unreported ones.

Challenges of our study:
1) Identify undocumented access channels
2) Automate assessment process
3) Pinpoint customized (undiscovered) UUIs

8

9

Assessing Documented Channels

U2-I2 aims to test two types of errors:

1) Legacy permissions

• e.g., additional permissions requested, or higher permissions introduced

2) Missing de-identification

• e.g., MAC address randomization

10

Step 1 - Access Channel Exploration
Assessing Undocumented Channels

U2-I2 takes six pre-identified UUIs as seeds, considering that other unknown UUIs may share the
same set of access channels.

Two strategies to explore undocumented channels:

1) Static control flow analysis
• Extract method-level call relations until service managers
• Map local interfaces to the corresponding remote interfaces
• Pinpoint the components that serve the request

2) Filesystem forensics
• Search the values of six pre-identified UUIs

11

Two Typical Static Control Flows of the API Invocation
Assessing Undocumented Channels

Two Typical Static Control Flows of the API Invocation
Assessing Undocumented Channels

Visualization of two typical control flows starting from documented APIs.
(System properties and system services)

12

The invocation of API to
access a UUI is usually
handled by a system
service of Android.

Two Typical Static Control Flows of the API Invocation
Assessing Undocumented Channels

Visualization of two typical control flows starting from documented APIs.
(System properties and system services)

13

System properties are the
actual component to serve
the serial number.

The invocation of API to
access a UUI is usually
handled by a system
service of Android.

14

Through the exploration, U2-I2 recognizes three undocumented access channels:
1) System settings

• Stored in persistent storage
• Three key-value databases (.xml format)

2) System properties
• Stored inside system directory
• Indexed by keys
• Initialized at boot time

3) System services
• Enabled by inter-process communication
• Serve API requests through its public interfaces

Step 1 - Access Channel Exploration
Assessing Undocumented Channels

15

U2-I2 first retrieves entry points through the three undocumented channels, then tests through
an app installed on the devices.

U2-I2 makes use of public interfaces to query system properties and system settings

U2-I2 resorts to a “hacking way” through Java reflection to bypass the permission check to
invoke system services.

Step 2 – Retrieving Entry Points and Testing
Assessing Undocumented Channels

16

U2-I2 adopts a two-step approach to pinpoint unknown or OEM-
defined UUIs

1) Filtering

• Excludes values of insufficient size (e.g., 4 hex-digit)

2) Differential Analysis

• Excludes values that are same across devices

• Excludes values that are changed after factory reset
≠

=

After factory reset

Same model devices

A

A

B

*

*

**

Filtering Differential Analysis

Step 3 – UUI Identification
Assessing Undocumented Channels

UUIs

17

Statistics of the occurrence of UUI leakages detected in our
assessment, counted by UUI types and devices

Test devices cover 13 latest models from 9 manufacturers,
which represent almost 85% of the global market share of
Android devices*.

The UUI mishandling issues are pervasive in the latest Android
phones.

• 51 unique vulnerabilities, leading to 65 occurrences of UUI
leakages.

• 12 out of 13 tested device models contain at least 1 UUI
leakage,

• 1 vulnerability found in AOSP# and is inherited in all tested
OEM devices.

• 18 leakages are associated with unknown UUIs (classified
as misc. UUIs)

Key Finding 1
Landscape of OS-level UUI Safeguards

* Data source https://gs.statcounter.com/vendor-market-share/mobile/worldwide
Google Pixel model(s). AOSP 11 stands for a Google Pixel phone installed with Android OS 11.

14 unique miscellaneous UUIs recognized from 18 occurrences.

Recognized miscellaneous UUIs covers identifiers of NFC module, display panel, PCB, camera, and fingerprint sensors.

18

Channel Name Format & Purpose (keywords display in Bold format)

System
Settings

Global.cplc (C10) 45-byte hex string, for NFC module

Global.ro.boot.oled_wp (H11) 8-byte hex string, for OLED display panel
System.ReaperAssignedDeviceId (B9) 30-digit decimal string, unknown type+

System
Properties

gsm.serial (C10,11, D10,11) 19-digit decimal string, the device PCB serial number

ro.ril.oem.sno (H10,11) 8-byte hex string, unknown type+

vendor.camera.sensor.frontMain.fuseID (H10) 64-byte alphanumeric string, ID of the front main camera
vendor.camera.sensor.rearMain.fuseID (H10) 64-byte alphanumeric string, ID of the rear main camera
vendor.camera.sensor.rearUltra.fuseID (H10) 64-byte alphanumeric string, ID of the rear ultra-wide camera
vendor.camera.sensor.rearTele.fuseID (H10) 64-byte alphanumeric string, ID of the rear telephoto camera
persist.vendor.sys.fp.info (H10) 8-digit hex string, fingerprint sensor related

persist.vendor.sys.fp.uid (H10) 14-digit hex string, fingerprint sensor related

ro.qchip.serialno (F10) 8-digit hex string, a serial number of an embedded chip module

ro.recovery_id (B9) 32-digit hex string, ID of the boot image

ro.expect.recovery_id (B9) 32-digit hex string, a same value as above

+ The UUIs labelled as “unknown type” contain insufficient information in their names and values.

Key Finding 1
Landscape of OS-level UUI Safeguards – Misc. UUIs

The undocumented access channels are the
major exfiltration points.
• Contributes 45 out of all 51 vulnerabilities
• 5 are caught from the system services, 10 in

system settings, and the remaining 30 from
system properties.

19

Statistics of the occurrence of UUI leakages
detected in our assessment, counted by UUI

types and access channels

Key Finding 2
Exfiltration points via undocumented access channels

Have our identified undocumented channels
already been (ab)used in the wild?

We test the top 150 apps from the Google Play
Store and another 150 apps from an alternative
app store (Xiaomi App Store).

• 12 out of 300 analyzed apps have
relevant behaviors.

• All their accesses are through
undocumented access channels.

• The broad UUI collection by apps in the
wild is not observed in our study.

20

List of apps found potential UUI collection

App package name Downloads (by
Dec 2021) Involved UUIs Access channels

1 com.kwai.m2u 81mil+ Device ID, Misc. UUI+ Properties

2 com.kwai.videoeditor 86mil+ Device ID, Misc. UUI+ Properties

3 com.lbe.parallel.intl 100mil+ IMSI Services

4 com.liulishuo.engzo 116mil+ Device ID Properties

5 com.oppo.store 3mil+ Misc. UUI+ Properties

6 com.renrendai.haohuan 25mil+ Device ID Properties

7 com.tencent.qqimsecure 682mil+ IMSI Settings

8 com.tencent.wifimanager 192mil+ IMSI Settings

9 com.wuba.zhuanzhuan 234mil+ Device ID Properties

10 com.xunmeng.merchant 50mil+ Serial Properties

11 com.xunmeng.pinduoduo 5bil+ Serial Properties

12 ru.yandex.searchplugin 100mil+ Device ID Properties

+ The caught UUI access is through requesting the system property “gsm.serial”.

Key Finding 3
Exploits in the wild

• We have reported all our findings to the relevant
parties/stakeholders.

• We also have kept them confidential for at least 90
days for them to be mended before we reported them
in this paper.

• We have received 8 CVE entries registered by Google
and four other manufacturers.

21

CVE-listed vulnerabilities found by U2-I2

CVE ID Affected
devices

Involved UUIs

1 CVE-2020-12488 Vivo Serial

2 CVE-2020-14103 Xiaomi Serial

3 CVE-2020-14105 Xiaomi Misc. UUI (ro.ril.oem.sno)

4 CVE-2021-0428 Pixel ICCID

5 CVE-2021-25344 Samsung Serial

6 CVE-2021-25358 Samsung IMSI

7 CVE-2021-26278 Vivo WiFi MAC address

8 CVE-2021-37055 Huawei ICCID

Responsible Disclosure

Conclusion

• A comprehensive study to understand OS-level UUI protection.

• A systematic assessment approach to explore undocumented channels .

• Revealing the status quo of UUI protection on latest versions of Android.

22

Contacts
Should you have any questions, please feel free to contact us:

Jin Song Dong, NUS (dcsdjs@nus.edu.sg)

Guangdong Bai, UQ (g.bai@uq.edu.au)

Sin Gee Teo, A*STAR I2R (teo_sin_gee@i2r.a-star.edu.sg)

Qing Zhang, ByteDance (security@bytedance.com)

We are recruiting!!!

References

W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: an information- flow
tracking system for realtime privacy monitoring on smartphones,” ACM Transactions on Computer Systems (TOCS), vol. 32, no. 2, pp. 1–
29, 2014.
L. Qiu, Z. Zhang, Z. Shen, and G. Sun, “Apptrace: Dynamic trace on android devices,” in 2015 IEEE International Conference on Commu-
nications (ICC), 2015, pp. 7145–7150.
J. Ren, M. Lindorfer, D. J. Dubois, A. Rao, D. Choffnes, and N. Vallina- Rodriguez, “A longitudinal study of pii leaks across android app
versions,” in The Network and Distributed System Security Symposium (NDSS), 2018.
Z. Wang, Z. Li, M. Xue, and G. Tyson, “Exploring the eastern frontier: A first look at mobile app tracking in china,” in International
Conference on Passive and Active Network Measurement. Springer, 2020, pp. 314–328.

24

